University of Sussex
Browse

File(s) not publicly available

A Mec1- and PP4-dependent checkpoint couples centromere pairing to meiotic recombination

journal contribution
posted on 2023-06-07, 19:35 authored by Jill E Falk, Andrew Chi-ho Chan, Eva Hoffmann, Andreas Hochwagen
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.

History

Publication status

  • Published

Journal

Developmental Cell

ISSN

1534-5807

Volume

19

Page range

599-611

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC