Relative Orientation of Quadrupole Tensors from Two-Dimensional Multiple-Quantum MAS NMR

Nicholas G. Dowell, Sharon E. Ashbrook, Jamie McManus, and Stephen Wimperis*

School of Chemistry, University of Exeter
Exeter EX4 4QD, United Kingdom

Received March 14, 2001
Revised Manuscript Received May 23, 2001

Several methods have been proposed for obtaining high-resolution NMR spectra of half-integer spin quadrupolar nuclei ($I = 3/2, 5/2, \ldots$) in powdered solids. The double-rotation (DOR), dynamic-angle spinning (DAS), multiple-quantum magic-angle spinning (MQMAS), and satellite-transition magic-angle spinning (STMAS) techniques have attracted great interest owing to the importance of the nuclides 11B, 23Na, 71Ga ($I = 3/2$), and 17O, 27Al ($I = 3/2$) in the NMR of ceramics, glasses, and microporous materials. Although the “isotropic” spectra supplied by these techniques yield the quadrupole coupling constant, C_Q, and asymmetry, η, of each crystallographic site, they provide no information that can be used to relate two quadrupole tensors. In this communication, we show that using a modified version of the two-dimensional MQMAS technique to cross-correlate second-order broadened NMR line shapes allows the relative orientation of quadrupole, and hence electric field gradient, tensors to be determined.

The nuclear quadrupole moment, Q, couples with the surrounding electric field gradient to give rise to an anisotropic interaction that broadens NMR spectra of spin $I > 1/2$ nuclei in powdered solids. The quadrupole tensor $Q = eQV/2(2I - 1)$ is usually parametrized by a coupling constant $C_Q = eQV_{zz}/h$ and an asymmetry $\eta = (V_{xx} - V_{yy})/V_{zz}$, where the V_{ij} are the principal axes of the field gradient tensor V and are defined such that $|V_{zz}| \geq |V_{xx}| \geq |V_{yy}|$. The quadrupole coupling constants of nuclei such as 17O, 23Na, and 27Al typically lie in the range 0–15 MHz and usually only the “central” transition, that between the $m_l = +3/2$ and $-1/2$ eigenstates, is observed by conventional NMR techniques as this is not quadrupole broadened in first order. The central transition is broadened by anisotropic second-order quadrupole effects, however, and this inhomogeneous broadening, although typically only several kilohertz, normally prevents the resolution of crystallographically distinct sites.

Magic-angle spinning (MAS) is widely used to remove inhomogeneous broadening due to first-order dipolar couplings and chemical shifts from NMR spectra of powdered solids. The method cannot fully remove the second-order quadrupole broadening of a central transition powder line shape, however, as only that part of the anisotropy of the second-order interaction that has rank $I = 2$ is fully averaged. The remaining rank $I = 4$ part is incompletely averaged and the resulting line shape, although narrower than that of the static solid, is still inhomogeneously broadened. The MQMAS technique exploits the property that the rank $I = 4$ broadening of a transition between the $m_l = \pm n/2$ and $-n/2 (n = 3, 5, ..., 2I)$ eigenstates is scaled relative to that of the central transition. Thus, by using MAS to remove the $I = 2$ broadening and by correlating multiple-quantum against single-quantum coherences, it is possible to refocus the second-order quadrupole broadening and obtain a two-dimensional NMR spectrum from which an isotropic spectrum can be extracted.

Figure 1a shows the two-dimensional 23Na triple-quantum MAS NMR spectrum of sodium molybdate dihydrate, $\text{Na}_2\text{MoO}_4\cdot2\text{H}_2\text{O}$. Two important features of MQMAS are that the anisotropic second-order quadrupole broadening of the two Na sites are still present in the spectrum in Figure 1a, producing “ridge” line shapes with a gradient of $-7\theta_n$, and that resolution has been achieved through the two-dimensional dispersion of these ridges. This spectrum can be analyzed to find the quadrupole coupling constant, C_Q, and asymmetry, η, of each crystallographic site and this yields $C_{Q1} = 0.88$ MHz and $\eta_1 = 0.23$ and $C_{Q2} = 2.68$ MHz and $\eta_2 = 0.08$, confirming the literature values. However, an MQMAS experiment provides no information that can be used to relate one quadrupole tensor to another, such as internuclear distances or relative orientations.

The relative orientation of two interaction tensors can be determined using a two-dimensional NMR experiment that cross-correlates the powder spectra. Although originally discussed for static solids and first-order interactions, the same principles apply to half-integer spin quadrupolar nuclei under MAS conditions.6
A second-order broadened MAS line shape is the sum of the homogeneous resonances contributed by all the individual crystallites in the powder. A distinct nucleus, \(k \), in a particular crystallite has a quadrupole tensor \(Q_k \), whose orientation relative to rotor-fixed axes is described by two angles, \(\beta_k \) and \(\gamma_k \). If a two-dimensional experiment is performed in which magnetization is transferred between two distinct nuclei, \(k = 1 \) and \(2 \), within a single crystallite during a “mixing time”, \(t_m \), then two “cross” peaks that cross-correlate the two MAS line shapes will appear. Each two-dimensional cross-peak will be the sum of homogeneous resonances whose frequency in one dimension depends on the angles \(\beta_1 \) and \(\gamma_1 \) and in the other dimension on \(\beta_2 \) and \(\gamma_2 \). Overall, the shape of the inhomogeneously broadened cross-peaks will be characteristic of the two angles \(\beta' \) and \(\gamma' \) that describe the relative orientation of \(Q_1 \) and \(Q_2 \), where \(\beta' \) is the angle between \((V_{1y}) \) and \((V_{2y}) \) and \(\gamma' \) is the angle between \((V_{1x}) \) and \((V_{2x}) \).

A simple “NOESY-type” correlation experiment is unlikely to yield cross-peaks from which \(\beta' \) and \(\gamma' \) can be determined. This is because, if the second-order broadened MAS line shapes are unresolved, the autocorrelation, or “diagonal”, peaks in a two-dimensional NOESY-type spectrum will overlap and, in consequence, the corresponding cross-peaks will also overlap with each other and the diagonal peaks, thus obscuring any orientational information. An MQMAS spectrum, however, features resolved ridge line shapes and, if these can be cross-correlated, overlap of the resulting cross-peaks is much less likely to occur.

A pulse sequence for MQMAS correlation is shown in Figure 2. This is identical to the widely used “filter” experiment except that the interval between the final two pulses, which normally has negligible duration (a few microseconds), has been extended to become a mixing time, \(t_m \), and \(^1\)H decoupling is not applied during this period. The mechanism for magnetization transfer during \(t_m \) is dipolar-driven spin diffusion. This is usually suppressed by MAS but we find by avoiding \(^1\)H decoupling during \(t_m \) and by using a modest MAS rate that acceptable transfer can be achieved.

Figure 1b shows the \(^{23}\)Na triple-quantum MAS correlation spectrum of sodium molybdate dihydrate, recorded using the sequence in Figure 2 with \(t_m = 200 \) ms. Comparison with Figure 1a reveals that two cross-peaks have appeared and that, although these still partly overlap with the autocorrelation ridges, they exhibit considerable structure.

Cross-correlation MQMAS peaks can be simulated as a function of the relative orientation angles \(\beta' \) and \(\gamma' \). The rank \(I = 4 \) Wigner rotation matrix elements describing the coordinate transformations are expanded and expressions obtained for the frequency dependence of a homogeneous resonance on \(\beta_1 \) and \(\gamma_1 \) in one dimension and on \(\beta_1', \gamma_1' \), and \(\beta_2' \) and \(\gamma_2' \) in the other. A

Figure 2. Pulse sequence and coherence pathways for triple-quantum MAS NMR correlation of quadrupole tensors.

Figure 3. Simulated triple-quantum \(I = \frac{1}{2} \) MAS NMR cross-correlation peaks for various relative orientations (angles \(\beta' \) and \(\gamma' \)) of quadrupole tensors. Simulation parameters: \(C_{Q1} = C_{Q2} = 2.0 \) MHz; \(\eta_1 = \eta_2 = 0.5; \) \(v_0 = 105.8 \) MHz; \(F_1 \) (triple-quantum) spectral width, 6 kHz; \(F_2 \) (single-quantum) spectral width, 4 kHz.