University of Sussex
Browse

File(s) not publicly available

Moment transport equations for the primordial curvature perturbation

journal contribution
posted on 2023-06-08, 06:20 authored by David J Mulryne, David SeeryDavid Seery, Daniel Wesley
In a recent publication, we proposed that inflationary perturbation theory can be reformulated in terms of a probability transport equation, whose moments determine the correlation properties of the primordial curvature perturbation. In this paper we generalize this formulation to an arbitrary number of fields. We deduce ordinary differential equations for the evolution of the moments of zeta on superhorizon scales, which can be used to obtain an evolution equation for the dimensionless bispectrum, fNL. Our equations are covariant in field space and allow identification of the source terms responsible for evolution of fNL. In a model with M scalar fields, the number of numerical integrations required to obtain solutions of these equations scales like O(M^3). The performance of the moment transport algorithm means that numerical calculations with M >> 1 fields are straightforward. We illustrate this performance with a numerical calculation of fNL in Nflation models containing M ~ 10^2 fields, finding agreement with existing analytic calculations. We comment briefly on extensions of the method beyond the slow-roll approximation, or to calculate higher order parameters such as gNL.

History

Publication status

  • Published

Journal

Journal of Cosmology and Astroparticle Physics

Issue

04

Volume

2011

Page range

030

Pages

23.0

Department affiliated with

  • Physics and Astronomy Publications

Notes

Author list in alphabetical order.

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC