University of Sussex
Browse
1302.0844v1.pdf (507.1 kB)

On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations

Download (507.1 kB)
journal contribution
posted on 2023-06-08, 17:22 authored by Elisabete da Cunha, Brent Groves, Fabian Walter, Roberto Decarli, Axel Weiss, Frank Bertoldi, Chris Carilli, Emanuele Daddi, David Elbaz, Rob Ivison, Roberto Maiolino, Dominik Riechers, Hans-Walter Rix, Mark Sargent, Ian Smail
Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z>5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local Universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g. carbon monoxide, CO) in two ways: (i) it provides an additional source of (both dust and gas) heating; and (ii) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

History

Publication status

  • Published

File Version

  • Published version

Journal

Astrophysical Journal

ISSN

0004-637X

Publisher

Institute of Physics

Issue

1

Volume

766

Page range

13

Department affiliated with

  • Physics and Astronomy Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2014-05-21

First Open Access (FOA) Date

2014-05-21

First Compliant Deposit (FCD) Date

2014-05-21

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC