University of Sussex
Browse
Allen,_Nicola_Jayne.pdf (9.44 MB)

Damage repair mechanisms in sensory hair cells

Download (9.44 MB)
thesis
posted on 2023-06-08, 22:47 authored by Nicola Jayne Allen
Aminoglycoside antibiotics are a class of drug used to treat bacterial infections but have the unfortunate side effect of being both oto- and nephro-toxic. Deafness caused by aminoglycoside ototoxicity results from a loss of sensory hair cells from the inner ear. In vitro, two early effects of aminoglycoside exposure can be observed. First, membrane blebs are formed around the perimeter of the hair-cell apical surface. Secondly phosphatidylserine (PS), an aminophospholipid that is normally restricted to the inner leaflet of the plasma membrane, flops to the outer leaflet. This membrane damage occurs rapidly, within 90-120 seconds of drug exposure and can be completely reversed. The aim of this thesis was to determine the molecular mechanisms underlying damage repair in sensory hair cells recovering from aminoglycoside damage. TEM studies using cationic ferritin as a tracer indicates the repair process involves membrane internalisation, but recovery cannot be blocked by inhibitors of macropinocytosis, the clathrin-independent carrier (CLIC) pathway, PI3 kinase, PKC, Pak1 or of the clathrin-coated pit pathway. Damage repair is, however, prevented by the actin stabiliser jasplakinolide and the inhibitor of Protein kinase A, H-89. In addition, the CLIC pathway inhibitor EIPA has been uncovered as a reversible blocker of aminoglycoside entry into hair cells.

History

File Version

  • Published version

Pages

188.0

Department affiliated with

  • Neuroscience Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2015-10-15

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC