University of Sussex
Browse

File(s) not publicly available

Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus

journal contribution
posted on 2023-06-07, 19:40 authored by A. Soro, J. Field, C. Bridge, S. C. Cardinal, R. J. Paxton
Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its Holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, P < 0.001). The Irish Sea acts as physical barrier to gene flow (partial Mantel test r = 0.453, P < 0.01), indicating that geography, rather than expression of solitary or social behaviour (partial Mantel test r = -0.238, P = 0.053), had a significant effect on the genetic structure of H. rubicundus across the British Isles. Although we cannot reject the hypothesis of a genetic underpinning to differences in solitary and eusocial phenotypes, our data clearly demonstrate a lack of reproductive isolation between the two social forms.

History

Publication status

  • Published

Journal

Molecular Biology

ISSN

0962-1083

Publisher

Blackwell Publishing

Issue

16

Volume

19

Page range

3351-3363

Pages

9.0

Department affiliated with

  • Evolution, Behaviour and Environment Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC