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Kinky brane worlds

Nuno D. Antunes,* Edmund J. Copeland,† Mark Hindmarsh,‡ and AndréLukas§

Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
~Received 27 January 2003; published 23 September 2003!

We present a toy model for five-dimensional heterotic M theory where bulk three-branes, originating in 11
dimensions from M five-branes, are modeled as kink solutions of a bulk scalar field theory. It is shown that the
vacua of this defect model correspond to a class of topologically distinct M-theory compactifications. Topology
change can then be analyzed by studying the time evolution of the defect model. In the context of a four-
dimensional effective theory, we study in detail the simplest such process, that is, the time evolution of a kink
and its collision with a boundary. We find that the kink is generically absorbed by the boundary thereby
changing the boundary charge. This opens up the possibility of exploring the relation between more compli-
cated defect configurations and the topology of brane-world models.

DOI: 10.1103/PhysRevD.68.066005 PACS number~s!: 11.25.Mj, 11.27.1d, 98.80.Cq

I. INTRODUCTION

The single most important problem in trying to make con-
tact between string or M theory and low-energy physics is
probably the large number of degenerate and topologically
distinct vacua of the theory. It is usually stated that nonper-
turbative effects will eventually lift most of this degeneracy.
However, despite the advances over recent years in under-
standing nonperturbative string- and M theory there is very
little indication of progress in this direction. In fact, with the
advent of M theory and concepts such as branes and brane-
world theories new classes of vacua have been constructed
and, as a consequence, the degeneracy problem has perhaps
grown even more serious. It seems worthwhile, therefore, to
ask whether the cosmological evolution rather than inherent
nonperturbative effects of the theory may play a prominent
role in selecting the vacuum state. Indeed, it is known that
the degeneracy of some vacua~particularly among those
with a large number of supersymmetries! will not be lifted
nonperturbatively, suggesting cosmology will have some role
to play.

The first task to tackle, in this context, is the formulation
of a workable theory capable of describing a number of to-
pologically different vacua and transitions among them. As a
second step, one will have to analyze the cosmological evo-
lution of this theory. It is precisely these two problems which
will be the main topic of the present paper.

The class of vacua we will use in our approach is pro-
vided by compactification of heterotic M theory@1# on
Calabi-Yau three folds@2–5# resulting in five-dimensional
brane-world theories@6–8#. These theories are defined on a
space-time with two four-dimensional boundaries corre-
sponding to the fixed planes of the orbifoldS1/Z2 and, in
addition, may contain bulk three-branes which originate
from M five-branes wrapping two-cycles in the Calabi-Yau
space @2,5#. The associated effective actions are five-
dimensional gaugedN51 supergravity theories in the bulk

coupled to four-dimensionalN51 theories residing on the
two boundaries and the three-branes. The prospects for
particle-physics model building within this class of compac-
tifications is quite promising and a number of models with
attractive particle-physics properties on the ‘‘observable’’
boundary have been constructed@9–15#. The simplest way to
characterize topologically different compactifications from
the viewpoint of the five-dimensional effective theories is by
using the chargesa1 anda2 on the boundaries and the three-
brane chargea3. These charges are not independent but must
satisfy the cohomology constrainta11a21a350 which
follows from anomaly cancellation. Two five-dimensional ef-
fective theories with different sets of charges (a1 ,a2 ,a3)
originate from topologically distinct compactifications. A
transition between two such theories may occur through a
small-instanton transition@16,17# when a three-brane col-
lides with one of the boundaries. The three-brane can then be
‘‘absorbed’’ by the boundary and, correspondingly, the
boundary charge is changed by the amount carried by the
incoming three-brane. This change in the boundary charge
indicates a more dramatic transition in the boundary theory.
For example, the gauge group and the amount of chiral mat-
ter @18# may be altered as a consequence of the internal to-
pology change.

The goal of this paper is to find a five-dimensional~toy!
model which provides a unified description for the above
class of topologically distinct vacua, in the simplest setting,
and allows for transitions between them. While, for simplic-
ity, we will assume that the topology of space-time both in
the internal Calabi-Yau space and in the orbifold direction
remains unchanged we will allow for transitions correspond-
ing to a topology change in the internal gauge-field instan-
tons on the boundaries and a change in the number and
charges of three-branes. Our basic method will be, starting
with five-dimensional heterotic M theory in its simplest
form, to model the three-branes as topological defects
~kinks! of a new bulk scalar fieldx. A similar approach was
used in@19#, and in a more restrictive setting it was shown
that D-branes may be described as kinks of a tachyon field
@20,21#. We do not claim, of course, that our specific bulk
scalar field model provides the correct definition of M theory
in these backgrounds. In particular, it clearly fails to include
the tensionless string which appears at the small instanton
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transition, as a consequence of the brane-boundary collision.
We do show however that the defect model in the back-
ground of its various vacuum states reproduces the five-
dimensional M-theory effective actions with different
charges (a1 ,a2 ,a3), corresponding to topologically distinct
M-theory compactifications. All that said, the results of this
work can still be approached independently of their hypo-
thetical connection to M theory, as a study of kink evolution
in brane-world models with boundaries.

Time-evolution of the defect model and the scalarx in
particular then allows for a transition between these topo-
logically distinct configurations. We will study in detail the
simplest such transition, namely the collision of a three-
brane kink with one of the boundaries. This type of process
has the added interest that it could be of fundamental cosmo-
logical importance, as it has been discussed extensively in
the context of ekpyrotic universe models@22,23#. The colli-
sion will be studied by calculating the four-dimensional ef-
fective action for the defect model in the background of such
a kink. As we will see from this four-dimensional action, the
collision process indeed generically leads to an absorption of
the kink and a change in the boundary charge by the amount
carried by the kink. Hence, we have established the existence
of one of the elementary topology-changing processes in our
defect model. This opens up the possibility, subject to ongo-
ing research, that a study of more complicated configura-
tions, such as brane-networks, will provide insight into topo-
logical properties of brane-world models.

The plan of the paper is as follows. In the next section, we
will introduce the five-dimensional effective actions from
heterotic M theory, in their simplest form. For later refer-
ence, we will also review the associated four-dimensional
effective theories. Section III then presents our defect model
and explains how, precisely, it is related to the M-theory
actions. In Sec. IV, we will compute the four-dimensional
effective action for the defect model in the background of a
kink and Sec. V presents the resulting evolution equations.
Section VI is devoted to a detailed study of the kink evolu-
tion and its collision with a boundary, based on these equa-
tions. A conclusion and outlook is presented in Sec. VII.

II. EFFECTIVE ACTIONS FROM HETEROTIC M
THEORY

To set the scene, we will now describe the five-
dimensional brane world theories for which we would like to
find a smooth defect-model. These brane-world theories can
be viewed as a minimal version of five-dimensional heterotic
M theory @6#. For later purposes, it will also be useful to
review the four-dimensional effective action associated to
these brane-world theories.

Coordinates for the five-dimensional spaceM 5 are de-
noted byxa where a,b, ¯ 50,1,2,3,5. We also introduce
four-dimensional indicesm,n, ¯ 50,1,2,3. The coordinate
y[x5 is compactified on an orbi-circleS1/Z2 in the usual
way, that is, by first compactifyingy on a circle with radiusr
and then dividing by theZ2 orbifold actiony→2y . Taking
the y coordinate in the rangeyP@2pr,pr# with the end
points being identified the two resulting four-dimensional

fixed planes~boundaries!, denoted byM 4
1 and M 4

2, are lo-
cated aty50 andy5pr, respectively. Such a geometry is
obtained by compactifying 11-dimensional heterotic M
theory on a Calabi-Yau space. If the five-branes present in
the 11-dimensional theory are included in this compactifica-
tion they lead, upon wrapping a two-cycle in the Calabi-Yau
space, to bulk three-branes in the five-dimensional brane-
world theories. For simplicity, we will consider a single such
three-brane whose world-volume we denote byM 4

3. We also
need to include theZ2 mirror of this three-brane with world-
volume M̃ 4

3. Three-brane world-volume coordinates are de-
noted bysm. In the minimal version of the model the bulk
fields consist of the metric and the dilatonF while the three-
brane world-volume fields are simply the embedding coordi-
natesXa

5Xa(sm). The effective action for these fields is
then given by@24#

S552

1

2k5
2 H EM5

A2gF1

2
R1

1

4
]aF]aF1

1

3
a2e22FG

1E
M4

1
A2g2a1e2F

1E
M4

2
A2g2a2e2F

1E
M4

3
øM̃4

3
A2gua3ue2FJ . ~2.1!

Note, that the dilatonF measures the size of the internal
Calabi-Yau space which is, more precisely, given byveF,
where v is a fixed reference volume. It relates the five-
dimensional Newton constantk5 to its 11-dimensional coun-
terpartk via

k5
2
5

k2

v

. ~2.2!

Further,a i , wherei51,2,3, are the charges on the orbifold
planes and the three-brane, respectively. They are quantized
and can be written as integer multiples

a i5sb i , b iPZ ~2.3!

of the unit charges defined by

s5

e0

pr
, e05S k

4p
D 2/32p2r

v
2/3

. ~2.4!

These charges satisfy the important cohomology condition

(
i51

3

a i50 ~2.5!

which follows from anomaly cancellation in the 11-
dimensional theory. The quantitya which appears in the
above bulk potential is a sum of step-functions given by

a5a1u~M 4
1!1a2u~M 4

2!1a3@u~M 4
3!1u~M̃ 4

3!#. ~2.6!
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Finally, the induced metricgmn on the three-brane world-
volume is defined as the pull-back

gmn5]mXa]nXbgab ~2.7!

of the space-time metric.
For positive three-brane charge,a3.0, the above action

can be embedded into a five-dimensionalN51 bulk super-
gravity theory coupled to four-dimensionalN51 theories on
the boundaries and the branes. The details of this supergrav-
ity theory have been worked out in Ref.@24#. In the case of
an anti-three-brane, that is fora3,0, while bulk supersym-
metry is preserved everywhere locally, it is broken globally.
Technically, this happens because the chirality of the four-
dimensional supersymmetry preserved on the three-brane is
opposite to the one on the orbifold fixed planes. Such non-
supersymmetric heterotic models containing antibranes have
not been studied in much detail, so far. We have included this
possibility here because it will naturally arise later in our
discussion of the defect model. The generalization to include
more than one three-brane is straightforward. It simply
amounts to replacing the Nambu-Goto type three-brane ac-
tion in the third line of Eq.~2.1! by a sum over such actions
~with generally different three-brane charges! and modifying
the cohomology condition~2.5! and the definition ofa, Eq.
~2.6!, accordingly.

Note that two actions of the type~2.1! but with different
sets of chargesa i correspond to topologically different
M-theory compactifications. Specifically, the chargesa1 and
a2 on the boundaries are related to gravitational and gauge
instanton numbers. If we keep the topology of the Calabi-
Yau space fixed, as discussed, different values ofa1 anda2
indicate a different topology of the internal gauge bundles.
As a consequence, the values ofa1 , a2 are also correlated
with other properties of the boundary theories, such as the
types of gauge groups and the amount of chiral matter. Dif-
ferent values ofa3 imply different internal wrapping num-
bers for the five-branes and, hence, clearly indicate different
topologies.

For the case of a three-brane~rather than an anti-three-
brane!, the action ~2.1! has a BPS domain-wall vacuum
@6,24# given by

ds2
5a0

2hdxmdxnhmn1b0
2h4dy2 ~2.8!

eF
5b0h3 ~2.9!

Xm
5sm ~2.10!

X5
5Y5const. ~2.11!

Here the functionh5h(y) is defined by

h~y !52

2

3 H a1uy u1c0 for 0<uy u<Y

~a11a3!uy u2a3Y1c0 for Y<uy u<pr
~2.12!

anda0 , b0 andc0 are constants. Note that this solution is not
smooth across the three-brane reflecting the fact that the
three-brane as described by Eq.~2.1! is infinitely thin. Such a
static BPS solution does not exist for the anti-three-brane
since the sum of the tensionsa11a21ua3u does not vanish
for a3,0 by virtue of the cohomology condition~2.5!. In
fact, solutions which couple to an anti-three-brane will, in
general, be time-dependent.

For later reference, it will be useful to discuss the four-
dimensional effective action associated to the brane-world
model ~2.1! and the above BPS vacuum. It is given by
@25,24#

S452

1

2kP
2EM4

A2g4F1

2
R41

1

4
]mf]mf1

3

4
]mb]mb

1

q3

2
eb2f]mz]mz G . ~2.13!

The three scalar fieldsf, b and z have straightforward in-
terpretations in terms of the underlying higher-dimensional
theories. The fieldf, as the zero mode of the five-
dimensional scalarF, specifies the volume of the internal
Calabi-Yau space averaged over the orbifold. More precisely,

this average volume is given byvef. The scalarb, on the
other hand, originates from the~55!-component of the five-
dimensional metric and measures the sizepreb of the orbi-
fold. Finally, z represents the position of the three-brane and
is normalized to be in the rangezP@0,1# with the end points
corresponding to the two boundaries of five-dimensional
space-time. The four-dimensional Newton constantkP is re-
lated to its five-dimensional cousin by

kP
2

5

k5
2

2pr
. ~2.14!

Finally, the three-brane charge

q35pra35e0b3 , b3PZ ~2.15!

is quantized in units ofe0 as defined in Eq.~2.4! and is
positive for the case under discussion.

As expected, the action~2.13! can be obtained from an
N51 supergravity theory by a suitable truncation. The
Kahler potential for this supergravity theory has been first
given in Ref.@25#. An important quantity which governs the
validity of the effective action~2.13! is the strong-coupling
expansion parameter
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e5e0eb2f. ~2.16!

It measures the relative size of string loop corrections to the
four-dimensional action~2.13! or, equivalently, the strength
of the warping in the orbifold direction from a five-
dimensional viewpoint. The effective action~2.13! is valid as
long ase,1 and can be expected to break down otherwise.
Another reason for a breakdown of the four- as well as the
five-dimensional effective theory is the five-brane approach-
ing one of the boundaries, that is,z→0 or z→1. In this case,
the underlying heterotic M theory may undergo a small-
instanton transition@16,17# which leads to the M five-brane
being converted into a gauge-field instanton~or, so called
gauge five-brane@26#! on the boundary. In such a process,
properties of the boundary theory, such as the gauge group
and the amount of chiral matter, can change dramatically as a
result of the internal topology change@18#. In our simple
five-dimensional model~2.1! such a modification of the
boundary theory is indicated by a change in the boundary
charge a1 or a2 by the amount of incoming five-brane
charge. It is clear, however, that the actions~2.1! or ~2.13!
are not capable of describing such a jump in the boundary
charge in a dynamical way. In fact, the four-dimensional ac-
tion ~2.13! does not retain any memory of the presence of the
boundaries asz→0,1. This can also be seen from the
moving-brane solutions to Eq.~2.13! found in Ref.@27# and
will be explained in more detail later. As we will see, our
defect model, to be presented in the next section, will con-
siderably improve on these points.

III. MODELING HETEROTIC BRANE-WORLD
THEORIES

We would now like to find a ‘‘smooth’’ model, replacing
the five-dimensional action~2.1!, where the three-brane is
not put in ‘‘by hand’’ but, rather, obtained as defect solution
to the theory. Such a model should have, as a solution, a
smooth version of the BPS domain wall~2.8!–~2.12!. Note,
that we will not attempt to find a smooth description for the
orbifold fixed planes. Their nature, as part of the space-time
geometry, is entirely different from the one of the three-
branes. In particular, the fixed plane tensionsa1 , a2 can be
negative whereas the three-brane tensionua3u is always posi-
tive.

Modeling codimension-one objects such as our three-
branes is usually achieved using kink-solutions of scalar field
theories@19#. This is indeed what we will do here. We, there-
fore, supplement the bulk field content of the five-
dimensional theory by a second scalar fieldx. For this bulk
scalar along with the dilatonF and the five-dimensional
metric, we propose the following action:

S̃552

1

2k5
2 H EM5

A2gF1

2
R1

1

4
]aF]aF

1

1

2
e2F]ax]ax1V~F,x !G1E

M4
1
A2g2W

2E
M4

2
A2g2WJ . ~3.1!

We require that the potentialV be obtained from a ‘‘super-
potential’’ W following the general formula@28#

V5

1

2
G IJ] IW]JW2

2

3
W2, ~3.2!

where G IJ is the sigma-model metric and indicesI,J, . . .
label the various scalar fieldsF I. For our specific action
~3.1!, we have two scalar fields (F I)5(F,x) and the sigma-
model metric is explicitly given by

G5diagS 1

2
,e2FD . ~3.3!

Further, we propose the following form for the superpoten-
tial:

W5e2Fw~x ! ~3.4!

wherew is an, as yet, unspecified function ofx. Using the
general expression~3.2! this results in a potential

V5

1

3
e22Fw2

1

1

2
e2FU, U5S dw

dx
D 2

. ~3.5!

Note that, in Eq.~3.1!, we have omitted the Nambu-Goto
type action for the three-brane corresponding to the third line
of the M-theory effective action~2.1!. The reason is, of
course, that we would like to recover the three-brane as a
kink-solution of the new scalar fieldx. For this to work out,
the potentialU has to have a nontrivial vacuum structure. In
fact, since the original three-brane charge is an~arbitrary!
integer multiple of a certain unit, we need an infinite number
of equally spaced minima. More precisely, we require that
the potentialU satisfies the following properties:

U is periodic with periodv, that isU(x1v)5U(x).
U has minima atx5xn5nv for all nPZ.
U vanishes at the minima, that isU(xn)50.
These requirements can be easily translated into condi-

tions on the functionw which determines the superpotential.
Clearly, from the second and third condition, the derivative
of w has to vanish at all minimaxn5nv of U. The definition
~3.5! of w in terms of U involves a sign ambiguity which
allows one, using the first condition onU above, to makew
periodic as well. However, the structure of the action~3.1!
makes it clear that the ‘‘vacuum values’’w(xn) of w have to
reproduce the charges on the orbifold planes. We, therefore,
definew as

w~x !5E
0

x

dx̃AU~ x̃ ! ~3.6!

which implies quasiperiodicity, that is,

w~x1v !5w~x !1w~v !. ~3.7!

We have plotted the typical form ofU andw in Fig. 1.
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For much of our discussion the concrete form of the po-
tential will be irrelevant as long as the above conditions are
met. A specific example, however, is provided by the sine-
Gordon potential

U5m2F12cosS 2px

v
D G , ~3.8!

where m is a constant. The associated superpotentialw is
easily obtained by integration.

This concludes the setup of our model. Let us now discuss
how, precisely, this model corresponds to the brane-world
theory~2.1! introduced earlier. The simplest solution forx is
to be in one of its vacuum states, that is,x5xn5nv for
some integern, throughout space-time. In this case, the su-
perpotential and potential reduce to

W5e2Fw~xn!, V5

1

3
e22Fw~xn!2. ~3.9!

Substituting this back into the action~3.1! and comparing
with the M-theory result~2.1! shows that this precisely cor-
responds to a situation without a bulk three-brane. In particu-
lar, one concludes that the boundary chargea1 has to be
identified with the valuew(xn)5w(nv)5nw(v) of the su-
perpotential at the respective minimum.1 This is, of course,
the more precise reason why we have required the superpo-
tential to be quasiperiodic rather than periodic. Furthermore,
we learn that the elementary unit of charges in the M-theory
model @see Eq.~2.4!# corresponds tow(v), that is,

s5w~v !5E
0

v

djAU~x !. ~3.10!

The next more complicated solutions are static kinks
where the scalar fieldx interpolates between two of its

minima as one moves along the orbifold direction. Due to the
cross-couplings in the action~3.1! also the dilatonF and the
metric necessarily have a nontrivial profile in this case. To
find such solutions, an appropriateAnsatz is provided by

ds2
5e2A(y)dxmdxnhmn1e2B(y)dy2 ~3.11!

F5F~y ! ~3.12!

x5x~y !. ~3.13!

The foury-dependent functionsA, B, F, x are subject to the
second order bulk equations of motion to be derived from the
first line in Eq.~3.1! and the boundary conditions

e2BA852

1

3
W52

1

3
e2Fw, ~3.14!

e2BF852
]W

]F
522e2Fw, ~3.15!

e2Bx85eF
]W

]x
5

dw

dx
. ~3.16!

Here, the prime denotes the derivative with respect toy and
the equations hold at both boundaries, that is, aty50 and
y5pr. The first equality in each equation is easily derived
from Eq. ~3.1! including the boundary terms while the sec-
ond one follows from inserting the explicit form of the su-
perpotential~3.4!.

Instead of dealing with the second order equations to ob-
tain explicit solutions it is much simpler to consider the first
order BPS-type equations. Their existence is guaranteed by
the special form of our scalar field potentialV as being ob-
tained from a superpotential@28#. Concretely, inserting the
Ansätze ~3.11!–~3.13! into the bulk part of the action~3.1!
one obtains an energy functional

E;E dye4AF26e22BA8
2
1

1

4
e22BF8

2

1

1

2
e2F22Bx8

2
1VG ,

5E dye4AF1

4 S e2BF872
]W

]F
D 2

1

1

2
e2FS e2Bx87eF

]W

]x
D 2

2

2

3
~3e2BA86W !2G6@e4aW#y50

y5pr ~3.17!

which can be written in Bogomol’nyi perfect square form.
This leads to the following first order equations:

e2BA857

1

3
W57

1

3
e2Fw, ~3.18!

1Note that, in the absence of three-branes, we havea252a1

from the cohomology condition~2.5!. Therefore, also the charge on
the second boundary is correctly being taken care of by our model.

FIG. 1. Shown is the typical shape of the superpotentialw and
the potentialU ~in units ofs) as a function of the scalar fieldx ~in
units of v).
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e2BF8562
]W

]F
572e2Fw, ~3.19!

e2Bx856eF
]W

]x
56

dw

dx
. ~3.20!

Again, the second equality in each line follows from insert-
ing the explicit superpotential~3.4!. The scale factorB is, of
course, a gauge degree of freedom and can, for example, be
set to a constant. It is clear then that Eq.~3.20! for x de-
couples from the other two. Thisx equation is, in fact, ex-
actly the same first order equation one would derive for a
single scalar fieldx with potentialU in a flat background. It
is, therefore, clear and can be seen by direct integration, that
this equation admits kink solutions wherex interpolates be-
tween a certain minimumx5xn5nv of U at y→2` and
one of its neighboring minima aty→1`. More precisely,
for the choice of the upper~lower! sign in Eq. ~3.20! the
minimum at x5(n11)v @x5(n21)v# is approached for
y→1`. The corresponding solutions forA andF can then
be obtained by inserting this kink solution and integrating
Eqs. ~3.18! and ~3.19!. In the next section, this will be car-
ried out in a more precise way. In addition, the solutions
obtained in this way have to satisfy the boundary conditions
~3.14!–~3.16!. Clearly, this is automatically the case if the
upper sign in the first order equations~3.18!–~3.20! has been
chosen, that is, if the kink interpolates between the minima
x5nv andx5(n11)v for increasingy. For the lower sign,
on the other hand, there is no chance to satisfy the boundary
conditions and, hence, no solutions of the type considered
here exist in this case. The interpretation of these results is
straightforward. While both types of kinks are on the same
footing as far as the bulk equations are concerned the bound-
ary conditions distinguish what should then be called an an-
tikink, interpolating betweenx5nv andx5(n21)v, from
a kink, interpolating betweenx5nv and x5(n11)v.
While the latter represents a BPS solution of the theory, the
former carries the wrong orientation to be compatible with
the boundaries and, in fact, will only exist as a dynamical
object. This is in direct analogy with the properties of three-
branes and anti-three-branes in our original M-theory model
~2.1!. The symmetry between kinks and antikinks was bro-
ken by the choice of sign of the boundary terms in Eq.~3.1!.
A BPS antikink solution can be obtained by swapping the
signs, a configuration which would then model branes with
charges satisfyinga12a2511. We should also stress that
although the bulk first-order equations for the kink coincide
with the boundary conditions, this makes the effects of the
boundary in no way ‘‘trivial’’ as far as the kink solution is
concerned. For example, a Lorentz boosted kink configura-
tion is a solution of the bulk equations of motion but it does
not obey the boundary conditions. A kink moving towards
one of the boundaries will necessarily feel its presence, its
motion clearly differing from the free-boundary situation.

For the case of a kink, we would like to make the corre-
spondence with the M-theory model more precise. Let us
consider a kink solution to Eqs.~3.18!–~3.20! and ~3.14!–
~3.16! with the kink width being small~compared to the size

of the orbifold! and the core of the kink sufficiently away
from the boundaries. In this case, the profile forx andw(x)
can be approximated by a step-function. Specifically, we
have w(x).nw(v) to the left of the kink andw(x).(n
11)w(v) to the right. Inserting this into Eqs.~3.18!,~3.19!
and the boundary conditions~3.14!,~3.15! for A and F and
solving the resulting system precisely leads to the BPS three-
brane solution given by Eqs.~2.8!, ~2.9!, and ~2.12!. The
chargesa i appearing in this solution are given by

a15ns, a252~n11!s, a35s, ~3.21!

where we have used our earlier identification~3.10! of the
superpotential valuew(v) with the elementary charge unit
s. Hence, our model allows for a solution which can be
interpreted as a smooth version of the M-theory domain wall
coupled to a single-charged three-brane.

More generally, we would like to discuss the relation be-
tween the action~3.1! in the background of a kink solution
and the M-theory action~2.1!. To do this, we should allow
for fluctuations of the kink. It is well-known@29# that, for
sufficiently small width, the hypersurface prescribed by the
kink’s core is a minimal surface and is, therefore, adequately
described by a Nambu-Goto action. Practically, this implies
that the kinetic term forx and theU potential term in the
action ~3.1! can be effectively replaced by a Nambu-Goto
action describing the dynamics of the core of the kink. Of
course, this core has to be identified with the three-brane in
the M-theory model. It is easy to show that, by virtue of Eq.
~3.10!, the tension in this effective Nambu-Goto action is
given by s which is the correct value for a single-charged
three-brane withb351. Further, the superpotentialw in such
a kink background can be effectively replaced by a step-
function, as discussed above. Using the identification~3.21!
of charges, it is easy to see that the superpotentialw precisely
equals the functiona, defined in Eq.~2.6!, in this limit. As a
consequence, the second potential term in Eq.~3.1! propor-
tional to e22Fw2 precisely reproduces the bulk potential in
the M-theory action~2.1!. Similarly, the boundary potentials
in Eq. ~3.1! match the boundary potentials in Eq.~2.1! using
that w@x(y50)#.ns5a1 and w@x(y5pr)#.(n11)s5

2a2. Although there are no BPS antikink solutions, it is
clear that a similar argument can be made for the action~3.1!
in the background of an antikink leading to the M-theory
action ~2.1! with an anti-three-brane.

In summary, we have seen that the action~3.1! in the
background of various vacuum configurations of the fieldx
reproduces different versions of the M-theory effective ac-
tion ~2.1!. For a constant fieldx located in one of the minima
of U, we have reproduced the M-theory action without three-
branes. For a kink~antikink! background with sufficiently
small width away from the boundaries we have obtaining the
M-theory action with a single-charged three-brane~anti-
three-brane!. Note that, while from the viewpoint of the
smooth model~3.1! these cases merely correspond to differ-
ent configurations of the fieldx, they represent different ef-
fective actions on the M-theory side. As we have discussed,
these different effective actions arise from topologically dis-
tinct compactifications of the 11-dimensional M theory.
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While these compactifications are known to be related by
topology-changing transitions such as small-instanton transi-
tions these processes cannot be described by the action~2.1!.
What we have seen is, that our smooth defect model incor-
porates a number of these topologically distinct configura-
tions within a single theory and may describe transitions be-
tween them as the scalar fieldx evolves in time. In the
subsequent sections, we will study the simplest example for
such a transition, namely the collision of a kink with one of
the boundaries.

A final comment concerns the question of multicharged
branes. Clearly, multicharged BPS three-branes withb3.1
are allowed in the M-theory model~2.1!. However, our de-
fect model~3.1! does not have exact BPS multi-kink solu-
tions as long as the potentialU is smooth at its minima. The
reason is that, for smoothU, a kink solution does not reach a
minimum within a finite distance, as can be easily seen from
Eq. ~3.20! with U expanded around a minimum. As a conse-
quence, single-kink solutions cannot be ‘‘stacked’’ to pro-
duce exact multikink solutions. There are a number of op-
tions available to remove this apparent discrepancy. Firstly,
the model~3.1! as it stands does have approximate multikink
solutions~with exponential accuracy! which could be identi-
fied with multicharged three-branes. Secondly, if the poten-
tial U is continuous but nonsmooth at its minima a kink
solution can reach a minimum within a finite distance. There
is no obstruction then to build up exact multikinks by stack-
ing single-kink solutions. Thirdly, some multiscalar field
models are known to admit multikink solutions@30#. So, we
may generalize the action~3.1! by adding more than one
scalar field. For the purpose of this paper, we will not imple-
ment any of these possibilities explicitly but, rather, focus on
single-kink solutions in the following.

IV. THE FOUR-DIMENSIONAL EFFECTIVE ACTION OF
A KINK SOLUTION

We would now like to study one of the simplest dynami-
cal processes in the context of our defect model, namely the
time-evolution of a kink solution and its collision with a
boundary. For a sufficiently slow evolution this can be con-
veniently studied in the context of the four-dimensional ef-
fective theory associated to Eq.~3.1! in the presence of a
kink. The purpose of this section is to compute this effective
four-dimensional theory. As we will see, this computation
can be pushed a long way without specifying an explicit
potentialU. We will, therefore, keepU general throughout
this section. An explicit example forU will be studied in the
next section.

Our first step is to write the kink solution in a form which
makes the dependence on the various integration constants
~which will be promoted to four-dimensional moduli fields
later on! as explicit as possible. We find that the kink solu-
tion to Eqs.~3.18!–~3.20! and Eqs.~3.14!–~3.16! interpolat-
ing between the minimax5xn5nv and x5xn115(n
11)v for increasingy can be cast in the form

x5C@ebm21~y /pr2z !#, ~4.1!

eF
5ef@11e0eb2f f ~y ,b,z !#, ~4.2!

A5A01

1

6
F, ~4.3!

B5b, ~4.4!

where we recall thatA and B are the scale factors in the
five-dimensional metric as defined in Eqs.~3.11!–~3.13!. The
functionsC and f in the above solution can be expressed in
terms of the potential as follows:

C21~x !5

1

prm
E

[ n1(1/2)]v

x dx̃

AU~ x̃ !

, ~4.5!

f ~y ,b,z !52

2

pre0

3E
y0

y

dỹw$C@ebm21~ ỹ /pr2z !#%. ~4.6!

Heref, b, z, A0 andy0 are integration constants, whilem is
a constant which measures the width of the kink in units of
pr. It is clear from the form of the metric~3.11! that the
constantA0 can be absorbed into the four-dimensional met-
ric. As we will see, it is, however, convenient to keep this
constant explicitly since it can be used to canonically nor-
malize the four-dimensional Einstein-Hilbert term. For our
subsequent discussion, let us define the average^h& of a
function h5h(y) over the orbifold by

^h&5

1

pr
E

0

pr

dyh~y !. ~4.7!

Since the constantsy0 andf really describe the same degree
of freedom, we can fixy0 by requiring that̂ f &50. With this
convention, the integration constantf has a clear geometri-
cal interpretation, namelyef represents the orbifold average
of the dilatoneF. Similarly, eb measures the orbifold size in
units of pr. The final integration constantz specifies the
position of the kink’s core@the position wherex5(n
1

1
2 )v] in the orbifold direction. ValueszP@0,1# imply that

the kink’s core is located within the boundaries of five-
dimensional space and is, hence, physically present. Further,
z→0,1 indicates collision of the kink with one of the bound-
aries. Forz¹@0,1# the core is outside the physical region and
we can merely think ofz as the virtual position of the core
were space-time to continue beyond the boundaries. In this
case, the physical part of the kink, located between the
boundaries, is only its tail. In the limiting casez→6` the
kink disappears completely and we approach one of the
trivial vacuum states of the theory with eitherx5nv or x
5(n11)v throughout five-dimensional space-time depend-
ing on whetherz→1` or z→2`. Also note that the func-
tion C, defined in Eq.~4.5!, is independent of all integration
constants and can be computed for a given potentialU.

We should now promote all integration constants in our
kink solution to four-dimensional moduli fields. This leads to
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three scalar fields (f I)5(f,b,z) and the four-dimensional
effective metric g4mn . Accordingly, the Ansätze ~3.11!–
~3.13! should then be modified to

ds2
5e2A(y ,fI)dxmdxng4mn1e2B(y ,fI)dy2, ~4.8!

F5F~y ,f I!, ~4.9!

x5x~y ,f I!, ~4.10!

where A, B, F and x are as in Eqs.~4.1!–~4.4! but with
(f I)5(f,b,z) now viewed as functions of the external co-
ordinatesxm.

We are now ready to compute the four-dimensional effec-
tive action. Inserting theAnsätze ~4.8!–~4.10! into the action
~3.1! and integrating over the orbifold direction we obtain
the following result:

S̃452

1

2kP
2EM4

A2g4F1

2
R41

1

2
G IJ]mf I]mfJG .

~4.11!

The sigma-model metricG IJ is given by

G IJ52K e2A1BF23] IA]JA23] (IA]J)B

1

1

4
] IF]JF1

1

2
e2F] Ix]JxG L , ~4.12!

where ] I5]/]f I and (f I)5(f,b,z). Further, in order to
obtain an Einstein-frame action we have required that

^e2A1B&51. ~4.13!

This indeed fixes the constantA0 in Eq. ~4.3! to be

e2A05e2b^eF/3&21. ~4.14!

The four-dimensional Planck scalekP is defined by

kP
2

5

k5
2

2pr
, ~4.15!

as usual.
The remaining task is now to evaluate the expression

~4.12! for the moduli-space metric using the kink solution
~4.1!–~4.4!. This leads to fairly complicated results, in gen-
eral. There is, however, an approximation suggested by the
original M-theory model which simplifies matters consider-
ably. As discussed, the effective actions for heterotic M
theory in Sec. II are valid only if the strong-coupling expan-
sion parameter

e5e0eb2f ~4.16!

is smaller than one. We are, therefore, led to compute the
moduli-space metric~4.12! in precisely this limit which cor-
responds to small warping in the orbifold direction. Con-
cretely, we will keep terms up toO(e) and neglect all terms
of O(e2) and higher in our computation. This implies a dra-

matic simplification since the functionf, which enters the
kink solution Eq.~4.2! with an O(e) suppression, drops out
at this order. Inserting Eqs.~4.2!–~4.4! and ~4.14! into Eq.
~4.12!, one then finds for the moduli-space metric

G5S 1

2
0 0

0
3

2
1e2f^~]bx !2& e2f^]bx]zx&

0 e2f^]bx]zx& e2f^~]zx !2&

D
1O~e2!. ~4.17!

Using the solution~4.1! for x we finally obtain

Gff5

1

2
, ~4.18!

Gbb5

3

2
1~e2bm !2e0eb2f$J2@ebm21~12z !#

2J2~2ebm21z !%, ~4.19!

Gbz52e2bme0eb2f$J1@ebm21~12z !#2J1~2ebm21z !%,

~4.20!

Gzz5e0eb2f$J0@ebm21~12z !#2J0~2ebm21z !%,
~4.21!

as the only nonvanishing components ofG. Here, the func-
tions Jn are defined by

Jn~x !5

~pr !2m

e0
E

0

x

dx̃x̃nU@C~ x̃ !#

5

1

s
E

C(0)

C(x)

dx@C21~x !#nw8~x !, ~4.22!

where we recall that the functionC, defined in Eq.~4.5!, can
be computed for any given potentialU and is, by itself, in-
dependent of the moduli. The above result, good toO(e), for
the sigma model metric explicitly displays the complete
moduli dependence ofG and its only implicit features are the
dependence on the potentialU and a simple integral thereof.
We find it quite remarkable that the calculation can be
pushed this far without an explicit choice for the potentialU.

The results~4.18!–~4.21! suggest the existence of another
expansion parameter besidese, namely the quantitye2bm.
It represents the ratio of the kink’s width and the size of the
orbifold. Working in a thin-wall approximation where this
ratio is much smaller than one our results simplify even fur-
ther. Clearly, we then have to good accuracy

Gbb5

3

2
, Gbz50. ~4.23!

For the remaining nontrivial componentGzz we can explic-
itly carry out the integral~4.22! and find by inserting into Eq.
~4.21!
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Gzz5e0eb2fF~b,z ! ~4.24!

where

F~b,z !5

1

s
~w$C@ebm21~12z !#%

2w@C~2ebm21z !# !, ~4.25!

5

1

s
@w~y5pr !2w~y50!#.

~4.26!

Here, the notationw(y50) @w(y5pr)# indicates the value
of the superpotential evaluated for the kink solution at the
boundaryy50 (y5pr).

To summarize, in the limit of both the strong-coupling
expansion parameter and the ratio of wall to orbifold size
being smaller than one, that is,

e5e0eb2f
,1,

m

eb
,1, ~4.27!

the moduli-space metric for the kink solution is well-
approximated by

G5diagS 1

2
,
3

2
,e0eb2fF~b,z ! D ~4.28!

with associated four-dimensional effective action

S̃452

1

2kP
2EM4

A2g4F1

2
R41

1

4
]mf]mf1

3

4
]mb]mb

1

1

2
e0eb2fF~b,z !]mz]mzG . ~4.29!

Here, the functionF is as defined in Eq.~4.25!.
It is interesting to compare this four-dimensional effective

action to its counterpart~2.13! obtained in the M-theory case.
Obviously, the only difference arises in the kinetic term forz
where the functionF appears in Eq.~4.29! but not in the
M-theory result~2.13!. A detailed comparison requires com-
puting this function from Eq.~4.25! by inserting an explicit
potential U. However, the qualitative features ofF can be
easily read off from the alternative expression~4.26!. It
states thatF is the difference of the superpotential on the two
boundaries in units ofs and, hence, it is simply the ‘‘charge
difference’’ between the two boundaries. Suppose, that the
kink’s core is well within the physical space and away from
the boundaries, so thatzP@0,1# and sufficiently different
from the boundary values 0,1. The fieldx will then be very
close to the minimumx5nv at they50 boundary and very
close to the minimumx5(n11)v at the other boundary.
The charge difference between the boundaries and, hence,
the functionF, is, therefore, very close to one. If, on the
other hand, the virtual position of the kink’s core is atz.1
(z,0) and sufficiently away from the boundary,x will be
close to the minimumx5nv @x5(n11)v# on both bound-

aries. Hence the functionF is approximately zero in this
case. This obviously implies a nontrivial behavior ofF close
to the boundaries forz.0 andz.1. As a result, for the kink
being inside the physical space and away from the bound-
aries by a distance large compared to its width the effective
action ~4.29! completely agrees2 with the M-theory result
~2.13!. Conversely, if the kink approaches one of the bound-
aries or collides with it, that is,z→0,1, the functionF be-
comes nontrivial and the effective theories~4.29! and~2.13!
differ substantially. It is clear then, that the effective theory
~4.29! carries some memory of the presence of the bound-
aries while the M-theory action~2.13! does not. For this
reason, studying the collision process in the context of Eq.
~4.29! is an interesting problem which we will address in
Sec. VI.

V. AN EXPLICIT EXAMPLE

In this section, we consider the explicit example of the
double-well potential

U5m2~v
2
2x2!2, ~5.1!

where m is a constant. As it stands this potential does, of
course, not satisfy our periodicity requirement forU. How-
ever, for our purposes this is largely irrelevant since the
single-kink solution in which we are interested here probes
the potential only between the two minima.3 The associated
superpotential is given by

w5mxS v
2
2

1

3
x2D . ~5.2!

Hence the elementary charge units ande0 take the form

s5w~v !2w~2v !5

4

3
mv

3,

e05prs5

4

3
prmv

3. ~5.3!

The kink-solution for this potential is of the general form
~4.1!–~4.4! with the functionsC and f given by

C~x !5v tanh~x ! ~5.4!

and

f 5

1

e0eb Fc2

1

3
v

2tanh2j2

4

3
ln~coshj !G ,

2We recall that our kink carries a single charge and we should,
therefore, setb351 in Eq. ~2.15! to obtain perfect agreement.

3One way to satisfy all earlier requirements is to restrict the po-
tential ~5.1! to the interval@2v,v# and continue it periodically
outside. The subsequent results do not depend on whether one
works with this periodic version of the potential or simply with its
original form ~5.1!.
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j5

eb

m S y

pr
2z D , ~5.5!

where the thicknessm of the kink can be identified as

m5

1

mvpr
. ~5.6!

The constantc in Eq. ~5.5! has to be fixed so that^ f &50, as
discussed before. This leads to an expression involving
dilogarithms and we will not carry this out explicitly.

Instead, we consider the limit where the strong-coupling
expansion parametere remains small, so thatf becomes ir-
relevant and our general result~4.18!–~4.21! holds. The
functions Jn can now be explicitly computed inserting the
potential ~5.1! and ~5.4! into their definition ~4.22!. This
leads to

Jn~x !5

3

4E0

x

dx̃
x̃n

cosh4x̃
. ~5.7!

This, together with Eqs.~4.18!–~4.21! completely deter-
mines the moduli-space metric for the double-well potential
as long ase,1. While the above integrals can be carried out
for all relevant valuesn50,1,2, the casesn51 and n52
lead to somewhat complicated expressions, the latter involv-
ing a dilogarithm. However,J0 takes the relatively simple
form

J0~x !5

1

2
tanhx1

sinhx

4 cosh3x
. ~5.8!

As is clear from the general case discussed in the previous
section, for a kink with small width, that is,e2bm,1, for-
tunately J0 is the only relevant function. In this limit, the
moduli-space metric is, therefore, given by the general form
~4.28! which we repeat for convenience

G5diagS 1

2
,
3

2
,e0eb2fF~b,z ! D . ~5.9!

The functionF, defined in Eq.~4.25!, now takes the explicit
form

F~b,z !5J0@ebm21~12z !#2J0~2ebm21z !, ~5.10!

whereJ0 is given in Eq.~5.8!. Inserting this result into Eq.
~4.29! completely determines the four-dimensional kink ef-
fective theory fore,1 ande2bm,1. The functionF above
indeed has the properties mentioned in the previous section,
namelyF.1 for z well inside the interval@0,1# and F→0
for z→6`. The typical shape ofF as a function ofz is
shown in Fig. 2.

VI. KINK EVOLUTION EQUATIONS

We will now study the time-evolution of the kink based
on the effective four-dimensional action derived in the pre-
vious section. The collision of the kink with one of the

boundaries will, of course, be of particular interest.
We focus on simple time-dependent backgrounds and a

metric of Friedmann-Robertson-Walker form with flat spatial
sections, that is

ds4
2
52dt2

1e2a(t)dx2, ~6.1!

f I
5f I~ t !, ~6.2!

where (f I)5(f,b,z). Let us first review the general struc-
ture of the evolution equations for backgrounds of this form.
From the general sigma-model action~4.11! one obtains the
equations of motion

3ȧ2
5

1

2
G IJḟ

IḟJ, ~6.3!

2ä13ȧ2
52

1

2
G IJḟ

IḟJ, ~6.4!

f̈ I
13ȧḟ I

1GJK
I ḟJḟK

50, ~6.5!

where GJK
I is the Christoffel connection associated to the

sigma-model metricG IJ and the dot denotes the derivative
with respect to time. Adding the first two equations, we ob-
tain an equation for the scale factora alone which can be
immediately integrated. Discarding trivial integration con-
stants one finds

a5

1

3
lnutu. ~6.6!

This power-law evolution with power 1/3 is as expected for a
universe driven by kinetic energy only. We also remark that
we have, as usual, a (2) branch,t,0, with decreasinga
and a future curvature singularity att50 and a (1) branch,
t.0, with increasinga and a past curvature singularity at
t50. Our subsequent results will apply to both branches
although, for the concrete discussion, we will mostly focus
on the positive-time branch, where the universe expands. We
find it convenient to use the scale factora, rather thant, as
the time parameter in the following. The remaining evolution
equations can then be written in the form

FIG. 2. The function F which enters the effective four-
dimensional action of the kink as a function ofz for ebm21

510.
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f I
91GJK

I fJ
8fK

850, ~6.7!

1

2
G IJf

I
8fJ

853, ~6.8!

where the prime denotes the derivative with respect toa.
Hence, the scalar fieldsf I, viewed as functions of the scale
factora, move along geodesics in moduli space, with initial
conditions subject to the constraint~6.8!.

Let us now apply these equations to the moduli space
metric for the kink in a double-well potential, as computed in
the previous section. To keep the formalism as simple as
possible we will focus on the case of a small kink width, that
is, e2bm!1. The moduli-space metric is then specified by
Eqs. ~5.9!, ~5.10! and ~5.8!. Inserting this metric into Eq.
~6.7! we find

f91e0eb2fFz8
2
50, ~6.9!

b92

1

3
e0eb2fF~11ebm21K !z8

2
50, ~6.10!

z91~b82f8!z81ebm21Kb8z82

1

2
ebm21Lz8

2
50, ~6.11!

while the constraint~6.8! turns into

1

4
f8

2
1

3

4
b8

2
1

1

2
e0eb2fFz8

2
53. ~6.12!

The functionsK5K(b,z) andL5L(b,z) are related to de-
rivatives of F5F(b,z) and can be defined in terms ofJ0,
Eq. ~5.8!, as follows:

F~b,z !5J0@ebm21~12z !#2J0~2ebm21z !, ~6.13!

K~b,z !5

~12z !J08@ebm21~12z !#1zJ08~2ebm21z !

F~b,z !
,

~6.14!

L~b,z !5

J08@ebm21~12z !#2J08~2ebm21z !

F~b,z !
. ~6.15!

The typical shape ofF has been indicated in Fig. 2. Figure 3
shows the shape ofK andL as a function ofz.

The equations of motion are generally quite complicated
due to these functions. However, as the figures showF, K
andL are nontrivial only in small regions around the bound-
aries with size set byme2b ~the width of the kink relative to
the orbifold size! while they are relatively simple outside
these critical regions. It is, therefore, useful to discuss the
asymptotic form of the equations of motion away from the
boundaries. First of all, forzP@0,1# and away from the
boundaries we have

F.1, K.0, L.0. ~6.16!

Hence, for the kink being well inside the physical space the
equations of motion~6.9!–~6.12! greatly simplify and be-

come, in fact, identical to the analogous equations derived
from the M-theory action~2.13!.

On the other hand, forz,0 and away from the boundary
we have

F.0, K.4z, L.24, ~6.17!

There are analogous results forz.1 but we will focus on the
casez,0 for concreteness. Inserting these asymptotic ex-
pressions, we see that Eqs.~6.9!, ~6.10! and~6.12! for f and
b decouple from thez equation. They become, in fact, the
equations for freely rolling radii and can be easily integrated
to give

f53pfa1f0 , b53pba1b0 ~6.18!

wheref0 and b0 are arbitrary constants and the expansion
powerspf andpb satisfy the constraint

pf
2

13pb
2
5

4

3
~6.19!

which follows from Eq.~6.12!. The evolution of the kink can
now be studied in the background of these freely rolling
radii. Inserting the above solutions forf and b into the
equation forz, Eq. ~6.11!, we find

z913dz812m0
21e3pba~6pbz1z8!z850, ~6.20!

where

m05

m

eb0
~6.21!

is the width of the kink relative to the orbifold size initially
at a50 and

d5pb2pf . ~6.22!

Hence, forz,0 and away from the boundary the evolution
of the kink is described by the single differential equation
~6.20!.

FIG. 3. The functionsK and L which enter the effective equa-
tions of motion for the kink as a function ofz for ebm21

510.
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VII. KINK DYNAMICS AND KINK-BOUNDARY
COLLISION

We should now study the solutions to the system~6.9!–
~6.12!. Given that our main interest is in the collision of the
kink with a boundary, ideally, we would like to find solutions
with zP@0,1# initially which evolve towardsz→0. Given
the complexity of the equations, we cannot possibly hope to
achieve this analytically. Later, we will address this problem
numerically. However, some progress can be made analyti-
cally as long asz is away from the boundaries by using the
approximate equations forzP@0,1# or z,0 discussed in the
previous section. One may hope that finding such analytical
solutions for the evolution up to shortly before and after the
collision will lead to a correct qualitative picture of the col-
lision process, roughly by gluing together these two types of
solutions across the critical boundary region. As we will see
in our numerical analysis, this is indeed the case.

Let us start by looking at the casezP@0,1#. As discussed
above, as long asz is not too close to one of the boundaries,
the equations of motion reduce to the ones obtained from the
M-theory effective action~2.13!. Their solutions have been
found in Ref.@27# and are explicitly given by

f53pf,ia13~pf, f2pf,i!ln~11e23d ia!21/3d i1f0 ,
~7.1!

b53pb,ia13~pb, f2pb,i!ln~11e23d ia!21/3d i1b0 ,
~7.2!

z5

d

11e3d ia
1z0 . ~7.3!

Asymptotically, fora→6`, these solutions approach freely
rolling radii solutions forf andb while z becomes constant.
The early~late! rolling radii solution is characterized by the
expansion powerspf,i andpb,i (pf, f andpb, f). Both sets of
expansion powers are subject to the constraint

pf,n
2

13pb,n
2

5

4

3
~7.4!

wheren5i, f and are related by the linear map

S pb, f

pf, f
D 5PS pb,i

pf,i
D , P5

1

3 S 1 1

3 21D . ~7.5!

Further, we have defined the quantity

d i5pb,i2pf,i ~7.6!

which can be restricted, without loss of generality, to

d i.0 ~2 ! branch,

d i,0 ~1 ! branch. ~7.7!

We remark thatd f , the analogous quantity at late times, is
given by

d f[pb, f2pf, f52d i ~7.8!

as follows from the map~7.5!. The remaining integration
constantsf0 , b0 , z0 andd are subject to the restriction

f02b05 lnS 2e0d2

3 D . ~7.9!

Note thatz0 specifies the initial position ofz which moves by
a finite coordinate distanced to its final positionz01d.

What is the relevance of these solutions in our context?
First, we remind the reader that the above solutions play a
double-role as exact solution to the M-theory effective action
~2.13! and approximate solutions to the kink effective theory
if zP@0,1# and away from the boundaries. In their former
role they present another indication that the effective
M-theory action~2.13!, as it stands, is not adequate to de-
scribe the collision process since the boundary valuesz
50,1 are in no way singled out. In other words,z, as de-
scribed by these solutions, passes through the boundary with-
out being effected at all. For this reason, they will also be
very useful for comparison with solutions to the kink evolu-
tion equations, to explicitly see the boundary effect in the
latter. In their role as approximate solutions to the kink evo-
lution equations forzP@0,1# they tell us that the collision
can be arranged or avoided depending on a choice of initial
conditions. Indeed, the initial positionz0 of the kink and the
coordinate distanced by which it moves can be chosen arbi-
trarily. Hence, for the choicez0P@0,1# and z01dP@0,1#
~and both values away from the boundaries! the entire evo-
lution of the kink is described by the solutions above and a
collision with the boundary never occurs. There is, however,
a caveat to this argument. While the kink becomes static
asymptotically also the strong-coupling expansion parameter
e necessarily diverges@27#, as can be seen from the above
solutions. Therefore, we eventually lose control of our ap-
proximation and the effective theory breaks down. Clearly,
from the arguments so far, we cannot guarantee that the kink
remains static when this happens. In this paper, we will not
attempt to improve on this, for example by going back to the
five-dimensional theory. Instead, we will be content with ar-
ranging a certain characteristic behavior, such as the kink
becoming static, to occur for some intermediate period of
time before we lose control over the effective theory.

Let us now analyze the evolution of the kink forz,0 and
away from the boundary~the casez.1 is similar, of course!.
In this case, the system is adequately described by the single
approximate equation~6.20! for z while f andb are decou-
pled and evolve according to one of the rolling radii solu-
tions ~6.18!. Unfortunately, we did not succeed in integrating
the z equation in general. However, we can find a number of
partial solutions which, as we will see, provide a good indi-
cation of the various, qualitatively different types ofz evo-
lution.

Let us consider the evolution ofz in the background of a
special rolling radii solution with a static orbifold, that is,

pb50, pf56

2

A3
~7.10!
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where the two possible values ofpf follow from Eq. ~6.19!.
Equation~6.20! for z then simplifies to

z923pfz812m0
21z8

2
50. ~7.11!

The general solution to this equation can be readily found to
be

z5z01

vc

3pf
lnF11

v0

vc
~e3pfa

21!G , ~7.12!

wherez0 andv0 are integration constants specifying the ini-
tial position and velocity ofz at a50, that is, z05z(a
50) andv05z8(a50). Here, we are interested in solutions
wherez0 is negative and as close to the boundary as is com-
patible with the validity of Eq.~7.11!. In addition, we need
v0,0 soz evolves into the region well-approximated by Eq.
~7.11!. The parametervc is defined as

vc5

3

2
pfm0 . ~7.13!

Let us discuss the properties of this solution for an expand-
ing universe starting with the casepf512/A3. It is easy to
see from Eq.~7.12! that, independent of the initial velocity
v0 , z always diverges to2` at some finite value of the scale
factor a, in this case. Forpf522/A3, however, the situa-
tion is somewhat more complicated and depends on the re-
lation betweenuv0u and uvcu. One has to distinguish the fol-
lowing three cases:

~i! uv0u,uvcu: z converges exponentially to a constant.
~ii ! uv0u5uvcu: z diverges to2` asa→`.
~iii ! uv0u.uvcu: z diverges to2` at a finite value ofa.

Hence, we see thatvc plays the role of a critical velocity.
As we will confirm later, these three cases already represent
the three types of qualitatively different behavior which can
be observed for the fullz equation~6.20! or even the com-
plete system~6.9!–~6.12!.

We should remark, though, that the second caseuv0u
5uvcu while typical in thatz diverges asa→` is not repre-
sentative as far as the nature of the divergence is concerned.
While its divergence is linear ina, the more characteristic
case is an exponential divergence ina. The existence of such
exponential divergences can be seen from the special solu-
tion

z5

m0pf

2pb
e23pba ~7.14!

to Eqs.~6.20!. While this represents an exact solution for all
values ofpf and pb we have to restrict signs topb,0 and
pf.0 so thatz is negative and moves towards2`. Within
this range ofpf andpb , however, the above solution shows
an exponential divergence ofz asa→`.

After having identified the qualitatively different types of
z evolution we can now ask more systematically, based on
thez equation~6.20!, which type is realized for a given set of
parameters and initial conditions. As can be seen from a

rescaling ofz in Eq. ~6.20! the type of evolution cannot
depend on the value ofm0. The only possible dependence is,
therefore, onpb @recall that, for givenpb , pf is determined,
up to a sign, from Eq.~6.19!# and the initial velocityv0
5z8(a50). A relevant question in this context concerns the
stability of the solutionz5 const which can be viewed as the
limit of the exponentially converging case 1. Writing

z5z01z~a !, ~7.15!

wherez0,0, the linearized evolution equation forz is, from
Eq. ~6.20!, given by

z9523@d14m0
21z0pbe3pba#z8. ~7.16!

We conclude that the solutionz5 const can only be stable if

pb,0 and d5pb2pf.0. ~7.17!

It is only then that we expect the first case of convergentz to
be realized.

This can indeed by verified by a numerical integration of
Eq. ~6.20!. Solutions with convergingz exist if and only if
the conditions~7.17! are satisfied and, in addition, if the
initial velocity uv0u is smaller than a certain critical velocity
vc . A simple scaling argument shows that

vc5h~pb ,pf!m0 ~7.18!

where h is a function which, from the numerical results,
turns out to be ofO(1) and slowly varying. What happens
outside the region~7.17!? If we leave this range by crossing
pb50 we find for small positivepb anduv0u below the criti-
cal velocity thatz still converges at first but then, in accor-
dance with our analytic argument, develops an instability,
which drives it to2` at finite a. The intermediate stable
phase gradually disappears as one increasespb . For pb.0
and uv0u above the critical velocity one always finds diver-
gence to2` at finitea. Hence, forpb.0 we are always in
the third case above. As we leave the region~7.17! crossing
d50 we find case~ii ! is realized below and case~iii ! above
the critical velocity. However, asd becomes more negative,
the critical velocity decreases rapidly until we are left with
case~iii ! only.

In summary, the converging case~i! is only found in the
range~7.17! and for initial velocities smaller than a certain
critical value while otherwisez always diverges to2` typi-
cally according to case~iii ! at finite scale factora.

We can now try to combine the information we have gath-
ered about the evolution of the system before and after the
collision to set up criteria which will allow us to decide the
outcome of a collision process. Let us consider a particular
solution ~7.1!–~7.3! for the evolution inside the intervalz
P@0,1#. As we have already mentioned, the distance by
which the kink moves is a free parameter so a collision may
never occur. Then, this solution describes the full evolution
of the system as far as it is accessible within the four-
dimensional effective theory. On the other hand, if initial
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conditions are chosen so that a collision does occur, the par-
ticular solution~7.1!–~7.3! will determine the velocitieszcol8 ,
fcol8 and bcol8 right before the collision. We can then, ap-
proximately, identify v0.zcol8 , 3pf.fcol8 and 3pb.bcol8

and apply the previous results for the evolution atz,0. One
concludes that only for a very low-impact collision with
small zcol8 and an orbifold size which, at collision, decreases
less rapidly than the dilaton, that isbcol8 ,0 andfcol8 2bcol8

.0, doesz converge to a constant. Otherwisez diverges to
2` and this can, in fact, be viewed as the generic case.

Of course, the criteria above may be somewhat inaccurate
since we have ignored the complicated structure of the evo-
lution equations near the boundary. We have, therefore, nu-
merically integrated the full system~6.9!–~6.12! to test the
above criteria for the outcome of a collision process. It turns
out that, in broad terms, the picture remains qualitatively the
same.

Starting withz near zero inside the@0,1# interval, we went
around the ellipse (fcol8 )2

13(bcol8 )2.12. Note that in this
case the exact identity cannot be observed since the con-
straint equation~6.12! includes an extra term proportional to
(zcol8 )2. Nevertheless the correction is always small since we
setfcol2bcol to a large negative value. This makes the initial
value fore very small and allows us, for the cases wheree
grows, to follow the evolution for longer times untile.1
and the four-dimensional effective theory breaks down. We
also chose a large initialbcol so thate2bm remains as small
as possible during the evolution, for the cases withbcol8

,0. In all cases we sete051 andm50.2.
For each of these sets of initial conditions we then varied

zcol8 from zero upwards and looked for changes in the large
time behavior ofz. The numerical results were obtained by
evolving Eqs.~6.9!–~6.11! using a fourth-order fixed step
Runge-Kutta method. The accuracy of the method was
checked by confirming that the constraint equation Eq.~6.12!
was satisfied throughout the evolution. The individual terms
on the left hand side of Eq.~6.12! should sum to 3, and
typically after 2000 time-steps of size 0.01 the deviation
from this value was smaller than 0.01%. In the worst cases,
where the equations of motion are no longer valid because

one of the assumptions has broken down, the sum never gets
above 0.2%.

In Fig. 4 we have an example of the first type of behavior,
for a small negative value ofbcol8 . After crossing the bound-
ary atz50 the kink relaxes to a stable constant solution. For
early times this solution matches the one obtained from the
M-theory effective action for the same initial conditions.
Nevertheless, as soon as the kink approaches the boundary
the two start differing, converging to different asymptotic
values.

For a slightly higher value of the initial velocity the dif-
ference is even more striking, as shown in Fig. 5. In this case
z diverges in finite time, indicating that we are above the
critical velocity. This third case turns out to be the most
common, as already observed in the simplified system. Only
for bcol8 ,0 andbcol8 2fcol8 .0 andzcol8 below the critical ve-
locity does the system avoid singular behavior.

In Fig. 6 we have an example for a solution corresponding
to case 2. Here bothbcol8 and fcol8 are negative and we are
below the critical velocity. As a consequence ofd.bcol8

2fcol8 ,0, z does not relax to a constant but its magnitude
increases exponentially instead. In this case the solution has
to be taken with care, sincee2bm quickly becomes large in
the exponential regime and the equations of motion stop pro-
viding a reliable approximation.

FIG. 4. Position modulusz for the kink ~solid line! and
M-theory three-brane~dashed line! as a function of the scale factor
a. The initial conditions have been chosen aszcol50.027, zcol8 5

20.12, bcol52.0, bcol8 520.72, fcol516.14,fcol8 523.23.

FIG. 5. Same as in Fig. 4 but withzcol8 520.14.

FIG. 6. Position modulusz for the kink ~solid line! and
M-theory three-brane~dashed line! as a function of the scale factor
a. The initial conditions have been chosen aszcol50.027, zcol8 5

20.060,bcol52.0, bcol8 521.77, fcol514.75,fcol8 521.61.
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Finally we have checked that once we go above the criti-
cal velocity,z always diverges for finitea. It is well known
that inf4 theory when a kink-antikink collision takes place,
above a certain limit velocity, they reflect and bounce back
@31# ~for lower velocities they can either reflect or form a
bound state!. This behavior is a consequence of a resonance
effect between the kink pair and higher field modes, so we
should not be surprised to observe it in the context of our
four-dimensional effective action. This does not yet exclude
the possibility of a bounce in a high-velocity regime which is
accessible only in the context of the full five dimensional
theory, a question which is currently under investigation
@32#.

What do these results imply in terms of the five-
dimensional defect model~3.1!? As we have seen, ifz starts
its evolution within the interval@0,1# and subsequently col-
lides with a boundary~at z50) it is generically driven to
2` very rapidly. It should be stressed that thez kinetic
energy remains finite at this singularity. Nevertheless, we do
expect the effective four-dimensional theory to break down
eventually, asz→2`. This is because some of the higher-
order terms we have neglected are likely to grow withz, in a
way similar to the linearz term in Eq.~6.20!. However, at
least for sufficiently small expansion parameterse andme2b

the four-dimensional theory will be valid some way into the
singularity. Hence, we can conclude that a five-dimensional
kink, interpolating between the vacuax5nv and x5(n
11)v which collides with the boundary atz50 effectively
disappears and leaves the fieldx in the vacuum statex
5(n11)v ~and an analogous statement holds for collision
with the boundary atz51). From the M-theory perspective,
such a process corresponds to a transition

~b1 ,b2 ,b3!5„n,2~n11!,1…→~b1 ,b2 ,b3!

5„n11,2~n11!,0… ~7.19!

between two different sets of charges and, hence, topologi-
cally different compactifications.

VIII. CONCLUSION AND OUTLOOK

In this paper, we have presented a toy defect model for
five-dimensional heterotic brane-world theories, where three-
branes are modeled by kink solutions of a bulk scalar fieldx.
We have shown that the vacuum states of this defect model
correspond to a class of topologically distinct M-theory mod-
els characterized by the chargesb1 andb2 on the boundaries
and the three-brane chargeb3. Specifically, we have seen
that a state wherex equals one of the minimax5xn5nv of
the potential, wherenPZ, corresponds to a state with
charges (b1 ,b2 ,b3)5(n,2n,0), that is, an M-theory model
without three-branes. If, on the other hand,x represents a
kink solution interpolating between the minimax5nv and

x5(n11)v the associated M-theory charges are
(b1 ,b2 ,b3)5„n,2(n11),1… corresponding to a model with
a single-charged three-brane.

We have computed the effective four-dimensional action
associated to a kink solution and have studied the time-
evolution of a kink in this context. Our results show that,
generically, a collision of the kink with a boundary will lead
to a transition between the two types of vacua mentioned
above. In other words, the kink will disappear after collision
which corresponds to a transition between a state with a
single-charged three brane and a state without a three-brane.
We should stress that these results can only be trusted as far
as the four-dimensional effective action is valid. In particu-
lar, we cannot exclude the possibility of the kink bouncing
off the boundary for higher collision velocities. A future full
5D study of the problem will answer this question and clarify
the nature of the collision process in general.

There are several interesting directions which may be pur-
sued on the basis of these results. Clearly, our original
M-theory model as well as the associated defect model are
rather simple and a number of possible extension and modi-
fications come to mind. First of all, we may try to modify our
defect model by including more than one additional bulk
scalar field, in particular to allow for exact BPS multikink
solutions. One may ask whether the defect model can be
embedded into a five-dimensionalN51 supergravity theory
as is the case for the original M-theory model. Further, there
are a number of generalizations of five-dimensional heterotic
M theory, such as including a more general set of moduli
fields @8#, which one may try to implement into the defect
model. For example, including the general set of Kahler
moduli would allow one to study topological transitions of
the underlying Calabi-Yau space through flops, in addition to
the types of topology change considered in this paper.

Perhaps the most interesting direction is to study the evo-
lution of more complicated configurations of our defect
model ~3.1!. For example, one could envisage evolving the
field x from some initial ~say thermal! distribution to see
which type of brane-network develops at late time@32#. In
particular, one would like to answer the important question
whether the system can evolve from a brane-gas to a brane-
world state. If this is indeed what happens such an approach
will lead to predictions for the late-time brane-world that has
evolved, given a certain class of plausible initial states. Con-
cretely, within the context of the simple model presented in
this paper, we may expect predictions for the chargesb i in
this case. As we have discussed, the values of these charges
are correlated with important properties of the theory such as
the type of gauge group. Optimistically, we may therefore
hope that our approach leads to prediction for such important
low-energy data, at least within a restricted class of associ-
ated M-theory compactifications.

ACKNOWLEDGMENTS

A.L. and N.D.A. are supported by the PPARC.

KINKY BRANE WORLDS PHYSICAL REVIEW D 68, 066005 ~2003!

066005-15



@1# P. Horava and E. Witten, Nucl. Phys.B475, 94 ~1996!.
@2# E. Witten, Nucl. Phys.B471, 135 ~1996!.
@3# P. Horava, Phys. Rev. D54, 7561~1996!.
@4# A. Lukas, B.A. Ovrut, and D. Waldram, Nucl. Phys.B532, 43

~1998!.
@5# A. Lukas, B.A. Ovrut, and D. Waldram, Phys. Rev. D59,

106005~1999!.
@6# A. Lukas, B.A. Ovrut, K.S. Stelle, and D. Waldram, Phys. Rev.

D 59, 086001~1999!.
@7# J.R. Ellis, Z. Lalak, S. Pokorski, and W. Pokorski, Nucl. Phys.

B540, 149 ~1999!.
@8# A. Lukas, B.A. Ovrut, K.S. Stelle, and D. Waldram, Nucl.

Phys.B552, 246 ~1999!.
@9# B. Andreas, J. High Energy Phys.01, 011 ~1999!.

@10# G. Curio, Phys. Lett. B435, 39 ~1998!.
@11# R. Donagi, A. Lukas, B.A. Ovrut, and D. Waldram, J. High

Energy Phys.05, 018 ~1999!.
@12# R. Donagi, A. Lukas, B.A. Ovrut, and D. Waldram, J. High

Energy Phys.06, 034 ~1999!.
@13# R. Donagi, B.A. Ovrut, T. Pantev, and D. Waldram, Adv.

Theor. Math. Phys.5, 93 ~2002!.
@14# R. Donagi, B.A. Ovrut, T. Pantev, and D. Waldram, Class.

Quantum Grav.17, 1049~2000!.
@15# R. Donagi, B.A. Ovrut, T. Pantev, and D. Waldram, Adv.

Theor. Math. Phys.5, 499 ~2002!.
@16# E. Witten, Nucl. Phys.B460, 541 ~1996!.
@17# O.J. Ganor and A. Hanany, Nucl. Phys.B474, 122 ~1996!.
@18# B.A. Ovrut, T. Pantev, and J. Park, J. High Energy Phys.05,

045 ~2000!.

@19# O. DeWolfe, D.Z. Freedman, S.S. Gubser, and A. Karch, Phys.
Rev. D 62, 046008~2000!.

@20# A. Sen, Int. J. Mod. Phys. A14, 4061~1999!.
@21# J.A. Harvey and P. Kraus, J. High Energy Phys.04, 012

~2000!.
@22# J. Khoury, B.A. Ovrut, P.J. Steinardt, and N. Turok, Phys. Rev.

D 64, 123522~2001!.
@23# J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinardt, and N.

Turok, Phys. Rev. D65, 086007~2002!.
@24# M. Brandle and A. Lukas, Phys. Rev. D65, 064024~2002!.
@25# J. Derendinger and R. Sauser, Nucl. Phys.B598, 87 ~2001!.
@26# A. Strominger, Nucl. Phys.B343, 167 ~1990!; B353, 565~E!

~1991!.
@27# E.J. Copeland, J. Gray, and A. Lukas, Phys. Rev. D64, 126003

~2001!.
@28# K. Skenderis and P.K. Townsend, Phys. Lett. B468, 46 ~1999!.
@29# F. Bonjour, C. Charmousis, and R. Gregory, Phys. Rev. D62,

083504 ~2000!; B. Carter and R. Gregory,ibid. 51, 5839
~1995!.

@30# M.A. Shifman, Phys. Rev. D57, 1258 ~1998!; C. Bachas, J.
Hoppe, and B. Pioline, J. High Energy Phys.07, 041 ~2001!;
J.P. Gauntlett, D. Tong, and P.K. Townsend, Phys. Rev. D64,
025010~2001!; A.A. Izquierdo, M.A. Leon, and J.M. Guilarte,
ibid. 65, 085012~2002!; D. Tong, ibid. 66, 025013~2002!.

@31# D.K. Campbell, J.F. Schonfeld, and C.A. Wingate, Physica D
9, 1 ~1983!.

@32# N. D. Antunes, E. J. Copeland, M. Hindmarsh, and A. Lukas
~in preparation!.

ANTUNES et al. PHYSICAL REVIEW D 68, 066005 ~2003!

066005-16


