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Kinky brane worlds

Nuno D. Antunes, Edmund J. CopelandMark Hindmarsh, and AndreLukas®
Centre for Theoretical Physics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
(Received 27 January 2003; published 23 September)2003

We present a toy model for five-dimensional heterotic M theory where bulk three-branes, originating in 11
dimensions from M five-branes, are modeled as kink solutions of a bulk scalar field theory. It is shown that the
vacua of this defect model correspond to a class of topologically distinct M-theory compactifications. Topology
change can then be analyzed by studying the time evolution of the defect model. In the context of a four-
dimensional effective theory, we study in detail the simplest such process, that is, the time evolution of a kink
and its collision with a boundary. We find that the kink is generically absorbed by the boundary thereby
changing the boundary charge. This opens up the possibility of exploring the relation between more compli-
cated defect configurations and the topology of brane-world models.

DOI: 10.1103/PhysRevD.68.066005 PACS nuntderll.25.Mj, 11.27+d, 98.80.Cq

I. INTRODUCTION coupled to four-dimensiondll=1 theories residing on the
two boundaries and the three-branes. The prospects for
The single most important problem in trying to make con-particle-physics model building within this class of compac-
tact between string or M theory and low-energy physics idifications is quite promising and a number of models with
probably the large number of degenerate and topologicallgttractive particle-physics properties on the “observable”
distinct vacua of the theory. It is usually stated that nonperboundary have been construc{®d-15]. The simplest way to
turbative effects will eventually lift most of this degeneracy. characterize topologically different compactifications from
However, despite the advances over recent years in undethe viewpoint of the five-dimensional effective theories is by
standing nonperturbative string- and M theory there is veryusing the chargea; anda, on the boundaries and the three-
little indication of progress in this direction. In fact, with the brane charger;. These charges are not independent but must
advent of M theory and concepts such as branes and bransatisfy the cohomology constraint;+ a,+ a3=0 which
world theories new classes of vacua have been constructddllows from anomaly cancellation. Two five-dimensional ef-
and, as a consequence, the degeneracy problem has perhégagive theories with different sets of charges,(a,,a3)
grown even more serious. It seems worthwhile, therefore, toriginate from topologically distinct compactifications. A
ask whether the cosmological evolution rather than inherenransition between two such theories may occur through a
nonperturbative effects of the theory may play a prominensmall-instanton transitiofi16,17] when a three-brane col-
role in selecting the vacuum state. Indeed, it is known thafides with one of the boundaries. The three-brane can then be
the degeneracy of some vacyparticularly among those *“absorbed” by the boundary and, correspondingly, the
with a large number of supersymmetniasill not be lifted  boundary charge is changed by the amount carried by the
nonperturbatively, suggesting cosmology will have some roléncoming three-brane. This change in the boundary charge
to play. indicates a more dramatic transition in the boundary theory.
The first task to tackle, in this context, is the formulation For example, the gauge group and the amount of chiral mat-
of a workable theory capable of describing a number of toter [18] may be altered as a consequence of the internal to-
pologically different vacua and transitions among them. As gology change.
second step, one will have to analyze the cosmological evo- The goal of this paper is to find a five-dimensioly)
lution of this theory. It is precisely these two problems whichmodel which provides a unified description for the above
will be the main topic of the present paper. class of topologically distinct vacua, in the simplest setting,
The class of vacua we will use in our approach is pro-and allows for transitions between them. While, for simplic-
vided by compactification of heterotic M theofd] on ity, we will assume that the topology of space-time both in
Calabi-Yau three fold§2-5] resulting in five-dimensional the internal Calabi-Yau space and in the orbifold direction
brane-world theorie§6—8]. These theories are defined on aremains unchanged we will allow for transitions correspond-
space-time with two four-dimensional boundaries corredng to a topology change in the internal gauge-field instan-
sponding to the fixed planes of the orbifa®l/Z, and, in  tons on the boundaries and a change in the number and
addition, may contain bulk three-branes which originatecharges of three-branes. Our basic method will be, starting
from M five-branes wrapping two-cycles in the Calabi-Yau with five-dimensional heterotic M theory in its simplest
space [2,5]. The associated effective actions are five-form, to model the three-branes as topological defects
dimensional gaugetl=1 supergravity theories in the bulk (kinks) of a new bulk scalar fielgy. A similar approach was
used in[19], and in a more restrictive setting it was shown
that D-branes may be described as kinks of a tachyon field

*Email address: mppg5@pact.cpes.susx.ac.uk [20,21). We do not claim, of course, that our specific bulk
"Email address: e.j.copeland@sussex.ac.uk scalar field model provides the correct definition of M theory
*Email address: m.b.hindmarsh@sussex.ac.uk in these backgrounds. In particular, it clearly fails to include
$Email address: a.lukas@sussex.ac.uk the tensionless string which appears at the small instanton
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transition, as a consequence of the brane-boundary collisiofixed planes(boundariey denoted byIVI},, and Mﬁ, are lo-
We do show however that the defect model in the backcated aty=0 andy=mp, respectively. Such a geometry is
ground of its various vacuum states reproduces the fivegbtained by compactifying 11-dimensional heterotic M
dimensional M-theory effective actions with different theory on a Calabi-Yau space. If the five-branes present in
charges &, ,a;,a3), corresponding to topologically distinct the 11-dimensional theory are included in this compactifica-
M-theory compactifications. All that said, the results of thistion they lead, upon wrapping a two-cycle in the Calabi-Yau
work can still be approached independently of their hypo-space, to bulk three-branes in the five-dimensional brane-
thetical connection to M theory, as a study of kink evolutionworld theories. For simplicity, we will consider a single such
in brane-world models with boundaries. three-brane whose world-volume we denoteMby. We also
Time-evolution of the defect model and the scalain  need to include th&, mirror of this three-brane with world-
particular then allows for a transition between these tOPOy,5lume M3. Three-brane world-volume coordinates are de-
logically distinct configurations. We will study in detail the noted byaAf‘. In the minimal version of the model the bulk

simplest such transition, namely the collision of a three'fields consist of the metric and the dilat@nwhile the three-

has the added interest that it could be of fundamental Cosm;?;etlgsxvxozrlg;\zzlg)rn eT]:,zldesﬁircii3ém§éﬁézef§:nt$§iz'r}?eﬁjzoirg"

logical importance, as it has been discussed extensively i :

the context of ekpyrotic universe mod¢R22,23. The colli- then given by 24]
sion will be studied by calculating the four-dimensional ef-

fective action for the defect model in the background of such Ss=— i \/—_g
a kink. As we will see from this four-dimensional action, the 22| s
collision process indeed generically leads to an absorption of

the kink and a change in the boundary charge by the amount — o — o
carried by the kink. Hence, we have established the existence * fMi\/_gzale * fMi\/_QZaze
of one of the elementary topology-changing processes in our

defect model. This opens up the possibility, subject to ongo- n \/_—|a e ®

ing research, that a study of more complicated configura- miums Yias

tions, such as brane-networks, will provide insight into topo-

logical properties of brane-world models. _ Note, that the dilatonb measures the size of the internal
The plan of the paper is as follows. In the next section, Wec 51api-Yau space which is, more precisely, givenus?,

will introduce the five-dimensional effective actions from \ynere » is a fixed reference volume. It relates the five-

heterotic M theory, in their simplest form. For later refer- 4imensional Newton constant, to its 11-dimensional coun-

ence, we will also review the associated four-dimensiona{erpartk via

effective theories. Section Il then presents our defect model

and explains how, precisely, it is related to the M-theory 2

actions. In Sec. IV, we will compute the four-dimensional K§=—. (2.2

effective action for the defect model in the background of a v

kink and Sec. V presents the resulting evolution equations . .

Section VI is devoted to a detailed study of the kink evolu-Further,a;, wherei=1,2,3, are the charges on the orbifold

tion and its collision with a boundary, based on these equa[-’lanes and the three-brane, respectively. They are quantized

tions. A conclusion and outlook is presented in Sec. VII. and can be written as integer multiples

1 1 1
_ _ a = 2,20
SR+ 50,00+ za’e

(2.1

aj=of;, Biel (2.3
Il. EFFECTIVE ACTIONS FROM HETEROTIC M
THEORY of the unit charger defined by
To set the scene, we will now describe the five- 235, 2
dimensional brane world theories for which we would like to o= 2 €0= (L) TP (2.9
find a smooth defect-model. These brane-world theories can TP’ Am| 28

be viewed as a minimal version of five-dimensional heterotic

M theory [6]. For later purposes, it will also be useful to These charges satisfy the important conomology condition
review the four-dimensional effective action associated to

these brane-world theories. 3

Coordinates for the five-dimensional spak are de- Z a;=0 (2.5
noted byx® where a,,---=0,1,2,3,5. We also introduce =1
four-dimensional indicegt,v,--- =0,1,2,3. The coordinate

which follows from anomaly cancellation in the 11-
dimensional theory. The quantity which appears in the
above bulk potential is a sum of step-functions given by

y=x° is compactified on an orbi-circl&/Z, in the usual
way, that is, by first compactifying on a circle with radiup
and then dividing by th&, orbifold actiony— —y. Taking
the y coordinate in the rangge[ — mp,mp] with the end 1 ) 3 ~ 5
points being identified the two resulting four-dimensional a=a;0(My) +az0(M3) +as[ 6(My)+6(My)]. (2.6)
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Finally, the induced metricy,, on the three-brane world- Note that two actions of the typ@.1) but with different
volume is defined as the pull-back sets of chargesy; correspond to topologically different
M-theory compactifications. Specifically, the charggsand
Vuv:ﬁuxaé’vxﬂgaﬁ (2.7) a5, on the boundaries are related to gravitational and gauge

instanton numbers. If we keep the topology of the Calabi-
Yau space fixed, as discussed, different valuea0énd a,

can be embedded into a five-dimensiohit 1 bulk super- indicate a different topology of the internal gauge bundles.
As a consequence, the valuesawf, «, are also correlated

gravity theory coupled to four-dimensioridi=1 theories on with other properties of the boundary theories, such as the

the boundaries and the branes. The details of this supergray- ; "
ity theory have been worked out in RE4]. In the case of types of gauge groups and the amount of chiral matter. Dif

an anti-three-brane, that is farz<0, while bulk supersym- ferent values ol imply different internal wrapping num-

. o bers for the five-branes and, hence, clearly indicate different
metry is preserved everywhere locally, it is broken globally.topologies
O e co e a5 FO e G258 of  ree rapmter han an aniree-

; persy Y pre ; pbrang, the action(2.1) has a BPS domain-wall vacuum
opposite to the one on the orbifold fixed planes. Such non

supersymmetric heterotic models containing antibranes ha\Ie6’24] given by

of the space-time metric.
For positive three-brane charge;>0, the above action

not been studied in much detail, so far. We have included this ds?=adhdx“dx"7,,+ bih*dy? 2.9
possibility here because it will naturally arise later in our
discussion of the defect model. The generalization to include e®=pyh3 (2.9
more than one three-brane is straightforward. It simply
amounts to replacing the Nambu-Goto type three-brane ac- XM= gt (2.10
tion in the third line of Eq(2.1) by a sum over such actions
(with generally different three-brane chargaesd modifying X°=Y=rconst. (2.12)
the cohomology conditio2.5) and the definition otx, Eq.
(2.6), accordingly. Here the functiorh=h(y) is defined by
|
2 [ aqly|t+c for O<l|y|sY
h(y)=— 1|yl +¢o Iyl (2.12

3| (a;+as)ly|—asY+co for Y<|y|<mp

anday, by andc, are constants. Note that this solution is notthis average volume is given hye?. The scalar3, on the
smooth across the three-brane reflecting the fact that thether hand, originates from th®5)-component of the five-
three-brane as described by E2.) is infinitely thin. Such a  dimensional metric and measures the sigee’ of the orbi-
static BPS solution does not exist for the anti-three-brandold. Finally, z represents the position of the three-brane and
since the sum of the tensioms + a,+ | a3| does not vanish is normalized to be in the range=[0,1] with the end points
for a3<0 by virtue of the cohomology conditio(2.5). In  corresponding to the two boundaries of five-dimensional
fact, solutions which couple to an anti-three-brane will, inspace-time. The four-dimensional Newton constasis re-

general, be time-dependent. lated to its five-dimensional cousin by
For later reference, it will be useful to discuss the four-
dimensional effective action associated to the brane-world Ké
model (2.1) and the above BPS vacuum. It is given by K§>=2—- (2.14
[25,24 P

Finally, the three-brane charge

S,= 1f J [1R+1¢9 ¢aﬂ¢+3a BB
ST A PR G 47k Gs=mpaz=eofBs, PacZ (2.19

_ (2.13  Is quantized in units of, as defined in Eq(2.4) and is
positive for the case under discussion.

As expected, the actiof2.13 can be obtained from an
The three scalar field®, g andz have straightforward in- N=1 supergravity theory by a suitable truncation. The
terpretations in terms of the underlying higher-dimensionaKahler potential for this supergravity theory has been first
theories. The field¢, as the zero mode of the five- given in Ref.[25]. An important quantity which governs the
dimensional scala®, specifies the volume of the internal validity of the effective actior(2.13 is the strong-coupling
Calabi-Yau space averaged over the orbifold. More preciselygxpansion parameter

as
P abB—¢
+ > e aMza“z
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e=eqel 2. (2.16  We require that the potentid be obtained from a “super-

] ] . ) potential” W following the general formul&28]
It measures the relative size of string loop corrections to the

four-dimensional actiori2.13 or, equivalently, the strength 1 2

of the warping in the orbifold direction from a five- V= =G"Y9,Wa,W— —W2, (3.2
dimensional viewpoint. The effective acti¢®.13 is valid as 2 3

long ase<1 and can be expected to break down otherwise.

Another reason for a breakdown of the four- as well as thavhere G,; is the sigma-model metric and indicég], . . .
five-dimensional effective theory is the five-brane approachlabel the various scalar field®'. For our specific action
ing one of the boundaries, that 50 orz—1. In this case, (3.1), we have two scalar fieldsi(') = (®, x) and the sigma-
the underlying heterotic M theory may undergo a small-model metric is explicitly given by
instanton transitiorf16,17 which leads to the M five-brane

being converted into a gauge-field instant@m, so called 1
gauge five-bran¢26]) on the boundary. In such a process, G=diag<§,e“1’ .
properties of the boundary theory, such as the gauge group
and the amount of chiral matter, can change dramatically as a .
result of the internal topology chandé$]. In our simple Eurther, we propose the following form for the superpoten-
five-dimensional model2.1) such a modification of the tial:

boundary theory is indicated by a change in the boundary o

charge @; or a, by the amount of incoming five-brane W=e""w(x) (3.9
charge. It is clear, however, that the actigq@sl) or (2.13

are not capable of describing such a jump in the boundaryherew is an, as yet, unspecified function gf Using the
charge in a dynamical way. In fact, the four-dimensional acgeneral expressio(8.2) this results in a potential

tion (2.13 does not retain any memory of the presence of the
boundaries az—0,1. This can also be seen from the
moving-brane solutions to E¢2.13 found in Ref.[27] and

will be explained in more detail later. As we will see, our

d_efect mo_del, to be presented_ in the next section, will conyjgte that, in Eq.(3.1), we have omitted the Nambu-Goto

siderably improve on these points. type action for the three-brane corresponding to the third line

of the M-theory effective actior(2.1). The reason is, of

course, that we would like to recover the three-brane as a

kink-solution of the new scalar fielg. For this to work out,
We would now like to find a “smooth” model, replacing the potentiall has to have a nontrivial vacuum structure. In

the five-dimensional actiofi2.1), where the three-brane is fact, since the original three-brane charge is(arbitrary

not put in “by hand” but, rather, obtained as defect solutioninteger multiple of a certain unit, we need an infinite number

to the theory. Such a model should have, as a solution, @f equally spaced minima. More precisely, we require that

smooth version of the BPS domain wél.8)—(2.12. Note,  the potentialU satisfies the following properties:

that we will not attempt to find a smooth description for the U is periodic with periodv, that isU(x+v)=U(x).

orbifold fixed planes. Their nature, as part of the space-time U has minima afy= y,=nv for all ne Z.

geometry, is entirely different from the one of the three- U vanishes at the minima, that i$(x,)=0.

(3.3

dw) 2

1 1
— _a 20 4 — - [
\Y 3e w 2e U, U

dx (3.9

1. MODELING HETEROTIC BRANE-WORLD
THEORIES

branes. In particular, the fixed plane tensiens a, can be These requirements can be easily translated into condi-
negative whereas the three-brane tensioyh is always posi-  tions on the functiow which determines the superpotential.
tive. Clearly, from the second and third condition, the derivative

Modeling codimension-one objects such as our threeof w has to vanish at all minimg,=nv of U. The definition
branes is usually achieved using kink-solutions of scalar field3.5) of w in terms of U involves a sign ambiguity which
theorieq 19]. This is indeed what we will do here. We, there- allows one, using the first condition dt above, to makev
fore, supplement the bulk field content of the five- periodic as well. However, the structure of the acti@ml)
dimensional theory by a second scalar figldFor this bulk ~ makes it clear that the “vacuum values/( ) of w have to
scalar along with the dilatodd and the five-dimensional reproduce the charges on the orbifold planes. We, therefore,

metric, we propose the following action: definew as
- 1 11 . X —
=753 VTg 5 Rt 79,29 W(x)=f dx VU (x) (3.6
2K5 Mg 0
Za @ a — which implies quasiperiodicity, that is,
+2e A xI*x+V(P,x) +fM‘11\/ g2wW p q p Yy

W(x+v)=w(y)+w(v). 3.7

— fMZJ—_gzw). (3.0

We have plotted the typical form & andw in Fig. 1.
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3 ; ; T minima as one moves along the orbifold direction. Due to the
cross-couplings in the actig.1) also the dilatorsb and the
metric necessarily have a nontrivial profile in this case. To
find such solutions, an appropriad@satz is provided by

ds?=e?AWdx“dx" 7, +e?2Vdy? (3.12)

O=D(y) (3.12

-l x=x(y). (3.13

-2 : : R ] The foury-dependent functions, B, ®, y are subject to the

-2 -1 0 1 2 second order bulk equations of motion to be derived from the
first line in Eq.(3.1) and the boundary conditions

FIG. 1. Shown is the typical shape of the superpotentiaind
the potentialJ (in units of o) as a function of the scalar field (in B 1 1 o
units of v). e Al=—gW=—ze "W, (3.14
For much of our discussion the concrete form of the po- OW
tential will be irrelevant as long as the above conditions are e Bq)’zzT): —2e Pw, (3.15
met. A specific example, however, is provided by the sine- J

Gordon potential
s, oIW dw 31
eX—eaX—dX. (3.19

U=m? , (3.9

1-cof 27X
Here, the prime denotes the derivative with respeagt émd
wherem is a constant. The associated superpotentiab  the equations hold at both boundaries, that isya) and
easily obtained by integration. y=mp. The first equality in each equation is easily derived
This concludes the setup of our model. Let us now discusrom Eq. (3.1) including the boundary terms while the sec-
how, precisely, this model corresponds to the brane-worlbnd one follows from inserting the explicit form of the su-
theory(2.1) introduced earlier. The simplest solution fpiis perpotential(3.4).

to be in one of its vacuum states, that js= y,=nv for Instead of dealing with the second order equations to ob-
some integen, throughout space-time. In this case, the su-tain explicit solutions it is much simpler to consider the first
perpotential and potential reduce to order BPS-type equations. Their existence is guaranteed by

L the special form of our scalar field potenthlas being ob-

o L o P tained from a superpotenti§28]. Concretely, inserting the
W=e "wixn), V=ze "Win)% B9 Angize (3.11—(3.13 into the bulk part of the actiof3.1)

one obtains an energy functional

Substituting this back into the actiaf3.1) and comparing

with the M-theory resulf2.1) shows that this precisely cor- n

responds to a situation without a bulk three-brane. In particu- E~ f dye

lar, one concludes that the boundary chargehas to be

identified with the valuen(yx,) =w(nv)=nw(v) of the su-

perpotential at the respective minimdrThis is, of course,

the more precise reason why we have required the superpo-

tential to be quasiperiodic rather than periodic. Furthermore, _f dyeds

we learn that the elementary unit of chakgén the M-theory B ye

model[see Eq.2.4)] corresponds tav(v), that is,

_Ge*ZBAIZ_i_ 29728(1)/2

4 ef<D72BX72+V

1 73(1),_2’”"2
AT

N| =

1 W\ 2
. +§e“1’ e‘BX’Ie‘Da)
U=W(v)=f0 dévU(x). (3.10
2
. . o - z(3e PA'xW)? £ [e**WIZ5P (317
The next more complicated solutions are static kinks 3

where the scalar fielgy interpolates between two of its ] ] ] )
which can be written in Bogomol'nyi perfect square form.

This leads to the following first order equations:

INote that, in the absence of three-branes, we haye — a,
from the cohomology conditiof2.5). Therefore, also the charge on e BA’= 11W= Ile_q)w (3.18
the second boundary is correctly being taken care of by our model. 3 3 ' '
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OW of the orbifold and the core of the kink sufficiently away
e Bp'=x 287{3 =%2e ®w, (319  from the boundaries. In this case, the profile foandw( x)
can be approximated by a step-function. Specifically, we
have w(x)=nw(v) to the left of the kink andw(y)=(n
e By'= ie‘pM: id_W_ (3.20 +1)w(v) to the right. Inserting this into Eq$3.18,(3.19
ax X and the boundary condition8.14),(3.195 for A and® and
solving the resulting system precisely leads to the BPS three-
Again, the second equality in each line follows from insert-brane solution given by Eq€2.8), (2.9, and (2.12. The
ing the explicit superpotenti@B.4). The scale factoB is, of ~ chargesa; appearing in this solution are given by
course, a gauge degree of freedom and can, for example, be
set to a constant. It is clear then that Eg.20 for y de- a;=no, a,=—(n+1l)o, az=o, (3.2)
couples from the other two. Thig equation is, in fact, ex-
actly the same first order equation one would derive for avhere we have used our earlier identificati@10 of the
single scalar fieldy with potentialU in a flat background. It  superpotential valuev(v) with the elementary charge unit
is, therefore, clear and can be seen by direct integration, that. Hence, our model allows for a solution which can be
this equation admits kink solutions whegeinterpolates be- interpreted as a smooth version of the M-theory domain wall
tween a certain minimuny= y,=nv of U aty— —o and  coupled to a single-charged three-brane.
one of its neighboring minima at— +%. More precisely, More generally, we would like to discuss the relation be-
for the choice of the uppeflower) sign in Eq.(3.20 the tween the actior{3.1) in the background of a kink solution
minimum at y=(n+1)v [x=(n—1)v] is approached for and the M-theory actioit2.1). To do this, we should allow
y— +0o. The corresponding solutions fé&rand® can then for fluctuations of the kink. It is well-knowh29] that, for
be obtained by inserting this kink solution and integratingsufficiently small width, the hypersurface prescribed by the
Egs.(3.18 and(3.19. In the next section, this will be car- kink’s core is a minimal surface and is, therefore, adequately
ried out in a more precise way. In addition, the solutionsdescribed by a Nambu-Goto action. Practically, this implies
obtained in this way have to satisfy the boundary conditionghat the kinetic term fory and theU potential term in the
(3.14—(3.16). Clearly, this is automatically the case if the action (3.1) can be effectively replaced by a Nambu-Goto
upper sign in the first order equatio(®&18—(3.20 has been action describing the dynamics of the core of the kink. Of
chosen, that is, if the kink interpolates between the minimaourse, this core has to be identified with the three-brane in
x=nhv andy=(n+1)v for increasingy. For the lower sign, the M-theory model. It is easy to show that, by virtue of Eq.
on the other hand, there is no chance to satisfy the boundarfg.10, the tension in this effective Nambu-Goto action is
conditions and, hence, no solutions of the type considerediven by o which is the correct value for a single-charged
here exist in this case. The interpretation of these results ithree-brane withB;=1. Further, the superpotentialin such
straightforward. While both types of kinks are on the samea kink background can be effectively replaced by a step-
footing as far as the bulk equations are concerned the boundlinction, as discussed above. Using the identificat®a1)
ary conditions distinguish what should then be called an anef charges, it is easy to see that the superpotentfkcisely
tikink, interpolating betweery=nv and y=(n—1)v, from  equals the functiom, defined in Eq(2.6), in this limit. As a
a kink, interpolating betweeny=nv and y=(n+1)v. consequence, the second potential term in Bdl propor-
While the latter represents a BPS solution of the theory, théional to e 2®w? precisely reproduces the bulk potential in
former carries the wrong orientation to be compatible withthe M-theory actior(2.1). Similarly, the boundary potentials
the boundaries and, in fact, will only exist as a dynamicalin Eq. (3.1 match the boundary potentials in E-1) using
object. This is in direct analogy with the properties of three-that w[ y(y=0)]=no=a; andw[ x(y=mp)]=(n+1)o=
branes and anti-three-branes in our original M-theory modet- «». Although there are no BPS antikink solutions, it is
(2.1). The symmetry between kinks and antikinks was bro-clear that a similar argument can be made for the ad8adh)
ken by the choice of sign of the boundary terms in 832). in the background of an antikink leading to the M-theory
A BPS antikink solution can be obtained by swapping theaction(2.1) with an anti-three-brane.
signs, a configuration which would then model branes with In summary, we have seen that the acti@l) in the
charges satisfyingr;— a,=+1. We should also stress that background of various vacuum configurations of the field
although the bulk first-order equations for the kink coincidereproduces different versions of the M-theory effective ac-
with the boundary conditions, this makes the effects of theion (2.1). For a constant fielg located in one of the minima
boundary in no way “trivial” as far as the kink solution is of U, we have reproduced the M-theory action without three-
concerned. For example, a Lorentz boosted kink configurabranes. For a kinKantikink) background with sufficiently
tion is a solution of the bulk equations of motion but it doessmall width away from the boundaries we have obtaining the
not obey the boundary conditions. A kink moving towardsM-theory action with a single-charged three-brafanti-
one of the boundaries will necessarily feel its presence, itthree-brang Note that, while from the viewpoint of the
motion clearly differing from the free-boundary situation.  smooth mode(3.1) these cases merely correspond to differ-
For the case of a kink, we would like to make the corre-ent configurations of the fielgt, they represent different ef-
spondence with the M-theory model more precise. Let udective actions on the M-theory side. As we have discussed,
consider a kink solution to Eq$3.18—(3.20 and (3.14—  these different effective actions arise from topologically dis-
(3.16 with the kink width being smal{compared to the size tinct compactifications of the 11-dimensional M theory.
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While these compactifications are known to be related by e?=ef[1+ €0e? %(y,8,2)], 4.2
topology-changing transitions such as small-instanton transi-

tions these processes cannot be described by the d2tin 1

What we have seen is, that our smooth defect model incor- A=Aot 5, (4.3
porates a number of these topologically distinct configura-

tions within a single theory and may describe transitions be- B=3, (4.4)

tween them as the scalar fieljgd evolves in time. In the

subsequent sections, we will study the simplest example fowhere we recall thafA and B are the scale factors in the

such a transition, namely the collision of a kink with one of five-dimensional metric as defined in E43.1)—(3.13. The

the boundaries. functionsC andf in the above solution can be expressed in
A final comment concerns the question of multichargedterms of the potential as follows:

branes. Clearly, multicharged BPS three-branes Wik 1

are allowed in the M-theory modé2.1). However, our de- L 1 rx dy
fect model(3.1) does not have exact BPS multi-kink solu- C(x= —f —, (4.9
tions as long as the potentidlis smooth at its minima. The TP I [n+(L2)] VU(x)

reason is that, for smoott, a kink solution does not reach a
minimum within a finite distance, as can be easily seen from
Eq. (3.20 with U expanded around a minimum. As a conse- f(y.8,2)=~ Tpey

guence, single-kink solutions cannot be “stacked” to pro-

duce exact multikink solutions. There are a number of op- Y o~ P

tions available to remove this apparent discrepancy. Firstly, X fyodyw{C[eﬁ,u (ylmp=2)]}. (4.6

the model(3.1) as it stands does have approximate multikink

solutions(with exponential accuragyhich could be identi- Heredg, B, z, Ay andy, are integration constants, whileis
fied with multicharged three-branes. Secondly, if the potena constant which measures the width of the kink in units of
tial U is continuous but nonsmooth at its minima a kink mp. It is clear from the form of the metri¢3.11) that the
solution can reach a minimum within a finite distance. ThereconstantA, can be absorbed into the four-dimensional met-
is no obstruction then to build up exact multikinks by stack-ric. As we will see, it is, however, convenient to keep this
ing single-kink solutions. Thirdly, some multiscalar field constant explicitly since it can be used to canonically nor-
models are known to admit multikink solutiop30]. So, we  malize the four-dimensional Einstein-Hilbert term. For our
may generalize the actio(8.1) by adding more than one subsequent discussion, let us define the avetageof a
scalar field. For the purpose of this paper, we will not imple-function h=h(y) over the orbifold by

ment any of these possibilities explicitly but, rather, focus on
single-kink solutions in the following.

1 (m
(m=— fo “dyh(y). .7

IV. THE FOUR-DIMENSIONAL EFFECTIVE ACTION OF  Since the constantg, and ¢ really describe the same degree
A KINK SOLUTION of freedom, we can fiy, by requiring that f)=0. With this
We would now like to study one of the simplest dynami- conyention, the integration constagithas a clegr geometri-
cal processes in the context of our defect model, namely th&2! Interpretation, namelg” represents the orbifold average
time-evolution of a kink solution and its collision with a ©f the dilatone®. Similarly, e® measures the orbifold size in
boundary. For a sufficiently slow evolution this can be con-Units of wp. The final integration constars specmei the
veniently studied in the context of the four-dimensional ef-Position of the kink's core[the position wherey=(n
fective theory associated to E¢B.1) in the presence of a T 2)v] in the orbifold direction. Valuez < [0,1] imply that
kink. The purpose of this section is to compute this effectivet® kink's core is located within the boundaries of five-
four-dimensional theory. As we will see, this computation dimensional space and is, hence, physically present. Further,
can be pushed a long way without specifying an explicitzﬁoil indicates collision of the kink with one of the bound-
potential U. We will, therefore, keefJ general throughout ~&ries. Foze[0,1] the core is outside the physical region and
this section. An explicit example fay will be studied in the W€ can merely think of as the virtual position of the core
next section. were space-time to continue beyond the boundaries. In this
Our first step is to write the kink solution in a form which ¢@se, the physical part of the kink, located between the
makes the dependence on the various integration constarff@undaries, is only its tail. In the limiting cage- + the
(which will be promoted to four-dimensional moduli fields kink disappears completely and we approach one of the
later on as explicit as possible. We find that the kink solu- trivial vacuum states of the theory with eithgr=nv or x

tion to Eqs.(3.18—(3.20 and Eqs(3.14—(3.16) interpolat- = (n+1)v throughout five-dimensional space-time depend-
ing between the minimay=y,=nv and x=y,:1=(N ing on whetheiz— + % or z— —«. Also note that the func-
+1)v for increasingy can be cast in the form tion C, defined in Eq(4.5), is independent of all integration

constants and can be computed for a given potebtial
We should now promote all integration constants in our
x=Cl[e’u Yylmp—12)], (4.2 kink solution to four-dimensional moduli fields. This leads to
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three scalar fields¢')=(¢,,z) and the four-dimensional
effective metric g4,,. Accordingly, the Ansatze (3.11)-
(3.13 should then be modified to

dsz=e2A(y'¢l)dx“deg4W+ eBUdy2 (4.9
O=D(y, '), (4.9
x=x(y, 9", (4.10

where A, B, ® and y are as in Eqs(4.1)—(4.4) but with
(¢")=(¢,B,2) now viewed as functions of the external co-
ordinatesx”.

PHYSICAL REVIEW D 68, 066005 (2003

matic simplification since the functiofy which enters the
kink solution Eq.(4.2) with an O(€) suppression, drops out
at this order. Inserting Eq$4.2)—(4.4) and (4.14) into Eq.
(4.12), one then finds for the moduli-space metric

We are now ready to compute the four-dimensional effec-

tive action. Inserting thénsatze (4.8)—(4.10 into the action

(3.1) and integrating over the orbifold direction we obtain

the following result:

- 1
S=——

(4.1

1 1
v 94[§R4+ EGlJ%d’la“(ﬁJ

2K|23 My
The sigma-model metri6, ; is given by

G;= 2< e? Bl —39,Ad;A—33,Ad,B

1 1
+Z(9|q)(9J¢)+ Ee_(l)(9|X(9JX:|>, (412

where 9,=d/d¢' and (¢')=(¢,B,z). Further, in order to
obtain an Einstein-frame action we have required that

(e?ATBy=1, (4.13
This indeed fixes the constaAt in Eq. (4.3) to be
e?fo=g F(e?®) 1, (4.14

The four-dimensional Planck scakg is defined by

Ks

Pmp’ (4.195

Kp

as usual.

L 0 0
2
G= 3 _
0 S+e X(dpx)?) & YIpxdzx)
0 e7¢<‘9ﬁXazX> e7¢<(azX)2>
+0O(€?). (4.17)
Using the solutior(4.1) for y we finally obtain
1
3 =B, )2 @B~ B, 1
GBB:§+(6 m) €€’ I [ n" N (1-2)]
—Jy(—efu12)}, (4.19

Gp=—e Pueel Y [efu " (1-2)]- Iy (- efu~'2)},
(4.20

G,=eoe® ol H(1-2)]-Jo(—Pu 2)},
(4.21)

as the only nonvanishing components@fHere, the func-
tions J,, are defined by

Jn(X)=

ar 2 X ~
(7p) “J XULCX)]
0

€0

1 [CM
_ -1 Nypy!
(JC(O) dx[C™ () 1"W'(x),

(4.22

where we recall that the functid®, defined in Eq(4.5), can

be computed for any given potentidl and is, by itself, in-
dependent of the moduli. The above result, goo@¢e), for
the sigma model metric explicitly displays the complete
moduli dependence @ and its only implicit features are the

The remaining task is now to evaluate the expressiorﬁjepe”dence on the potentldland a simple integral thereof.

(4.12 for the moduli-space metric using the kink solution
(4.1)—(4.4). This leads to fairly complicated results, in gen-

eral. There is, however, an approximation suggested by the

original M-theory model which simplifies matters consider- - TR ]
mit represents the ratio of the kink’s width and the size of the

ably. As discussed, the effective actions for heterotic

theory in Sec. Il are valid only if the strong-coupling expan-

sion parameter

e=eoeﬁ_¢

(4.19

is smaller than one. We are, therefore, led to compute the

moduli-space metri¢4.12) in precisely this limit which cor-

responds to small warping in the orbifold direction. Con-

cretely, we will keep terms up t@(e) and neglect all terms

of O(€?) and higher in our computation. This implies a dra-

We find it quite remarkable that the calculation can be
pushed this far without an explicit choice for the potential
The result44.18—(4.21) suggest the existence of another

expansion parameter besidesnamely the quantitg™ #p.

orbifold. Working in a thin-wall approximation where this
ratio is much smaller than one our results simplify even fur-
ther. Clearly, we then have to good accuracy

For the remaining nontrivial componet,, we can explic-
itly carry out the integra{4.22 and find by inserting into Eq.

(4.2
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G,,= €’ *F(B,2) (4.24 aries. Hence the functiof is approximately zero in this
case. This obviously implies a nontrivial behaviorFotlose
where to the boundaries faa=0 andz=1. As a result, for the kink
being inside the physical space and away from the bound-
aries by a distance large compared to its width the effective
action (4.29 completely agreéswith the M-theory result
5 1 (2.13. Conversely, if the kink approaches one of the bound-
—W[C(—e"n "2)]), (425 aries or collides with it, that isz— 0,1, the functionF be-
comes nontrivial and the effective theorigs29 and(2.13
differ substantially. It is clear then, that the effective theory
(4.29 carries some memory of the presence of the bound-
(4.26  aries while the M-theory actioti2.13 does not. For this
reason, studying the collision process in the context of Eq.

Here, the notatiowv(y=0) [w(y=mp)] indicates the value 4 5q 5 an interesting problem which we will address in
of the superpotential evaluated for the kink solution at theSec Vi

boundaryy=0 (y=mp).

To summarize, in the limit of both the strong-coupling
expansion parameter and the ratio of wall to orbifold size
being smaller than one, that is, In this section, we consider the explicit example of the

double-well potential

1
F(B.2)= —(w{Cle’n (1-2)]}

1
=;[W(y=wp)—W(y=0)].

V. AN EXPLICIT EXAMPLE

€= Goeﬁ_¢< 1, §< 11 (42D U:mZ(UZ_XZ)Z, (51)
the moduli-space metric for the kink solution is well- wherem is a constant. As it stands this potential does, of
approximated by course, not satisfy our periodicity requirement for How-
ever, for our purposes this is largely irrelevant since the
13 single-kink solution in which we are interested here probes
G=diaizy§,foeB¢F(ﬂ,Z)) (4.28  the potential only between the two minimidZhe associated
superpotential is given by

with associated four-dimensional effective action

w=my/| v?— E)(2). (5.2
~ 1 1 1 3 3
342_—2 V=04 §R4+ Z&M(ﬁa#d)—’_ Zﬁﬂﬁ&ulg
2KpI Mg Hence the elementary charge uaitand €, take the form

! s # 4.2 4
+ 5 €8 (B,2)d,zd"z|. (4.29 F=W(0) —W(—v)= =mv3,

3

Here, the functiorF is as defined in Eq4.25.

It is interesting to compare this four-dimensional effective
action to its counterpat2.13 obtained in the M-theory case.
Obviously, the only difference arises in the kinetic termZor
where the functiorF appears in Eq(4.29 but not in the The kink-solution for this potential is of the general form
M-theory result(2.13. A detailed comparison requires com- (4.1)—(4.4) with the functionsC andf given by
puting this function from Eq(4.25 by inserting an explicit
potential U. However, the qualitative features &f can be C(x)=v tanh(x) (5.9
easily read off from the alternative expressioh26). It
states thaF is the difference of the superpotential on the twoand
boundaries in units of and, hence, it is simply the “charge
difference” between the two boundaries. Suppose, that the (o 1 . 1 2anié— fln coshé)
kink's core is well within the physical space and away from N e’ 3? g 3 ( 2|
the boundaries, so thate[0,1] and sufficiently different
from the boundary values 0,1. The fieldwill then be very

close to the minimuny=nv at they=0 boundary and very 2y recall that our kink carries a single charge and we should,

close to the minimumy=(n+1)v at the other boundary. iherefore, se;=1 in Eq.(2.15 to obtain perfect agreement.
The charge difference between the boundaries and, hencelone way to satisfy all earlier requirements is to restrict the po-

the functionF, is, therefore, very close to one. If, on the tential (5.1) to the interval[—v,v] and continue it periodically
other hand, the virtual position of the kink's core iszat1  outside. The subsequent results do not depend on whether one
(z<0) and sufficiently away from the boundary,will be  works with this periodic version of the potential or simply with its
close to the minimunmy=nv [ x=(n+1)v] on both bound-  original form (5.2).

4
€Q=TpPo= §7Tpmv3. (5.3
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e?ly !
=15 59
H 0.8
where the thicknesg of the kink can be identified as
0.6
= mump’ (5.6 *“o0al
The constant in Eq. (5.5) has to be fixed so thdf)=0, as -
discussed before. This leads to an expression involving |
dilogarithms and we will not carry this out explicitly. :
Instead, we consider the limit where the strong-coupling 85 0 05 1 15
expansion parameter remains small, so th&tbecomes ir- z
relevant and our general resu#.18—(4.21) holds. The FIG. 2. The functionF which enters the effective four-

functions J, can now be explicitly computed inserting the dimensional action of the kink as a function ofor ey~ *=10.
potential (5.1) and (5.4) into their definition (4.22. This
leads to boundaries will, of course, be of particular interest.

We focus on simple time-dependent backgrounds and a

3(x . X" metric of Friedmann-Robertson-Walker form with flat spatial
In(¥)=7 . dxcosﬁr;(' (5.7 sections, that is
2 4+2 a2a(t) 4y 2
This, together with Eqs(4.18—-(4.21) completely deter- dsy dt+e™ax”, 6.1
mines the moduli-space metric for the double-well potential I 4t 6.2
as long ag<<1. While the above integrals can be carried out =), 6.2

lfordaltl relevanthvz:\Iuesw Toﬁ the casen= %h arlldt{\=2 | where (@')=(#,8,2). Let us first review the general struc-
'ead to somewhat complicated expressions, the 1atter INVOlg, e of the evolution equations for backgrounds of this form.
ing a dilogarithm. HoweverJ, takes the relatively simple

¢ From the general sigma-model actighl1l) one obtains the
orm equations of motion

sinhx

1 1
Jo(X) = =tanhx+ ———. 5.8 2 Yl d
ox) 2 4 coshix 8 3a 2G|J¢ ¢, (6.3

As is clear from the general case discussed in the previous . . 1 L

section, for a kink with small width, that i #u<1, for- 2a+3a%=— §G|J¢'¢J, (6.4
tunately J, is the only relevant function. In this limit, the

moduli-space metric is, therefore, given by the general form

11 ol I 5K _
(4.28 which we repeat for convenience ¢ +3agp +1¢p 9" =0, (6.9
1 3 where '} is the Christoffel connection associated to the
G=diag<§,§,eoeﬁ‘¢F(,8,z) . (5.9 sigma-model metrics,; and the dot denotes the derivative

with respect to time. Adding the first two equations, we ob-
tain an equation for the scale factaralone which can be
immediately integrated. Discarding trivial integration con-
stants one finds

The functionF, defined in Eq(4.25, now takes the explicit
form

F(B,2)=3[e’n 1 (1-2)]-Jo(—€’u"'2), (5.10

whereJ, is given in Eq.(5.8). Inserting this result into Eq.
(4.29 completely determines the four-dimensional kink ef- . ) )
fective theory fore<1 ande #u<1. The functionF above  This power-law evolution with power 1/3 is as expected for a
indeed has the properties mentioned in the previous sectiodniverse driven by kinetic energy only. We also remark that
namelyF=1 for z well inside the interva[0,1] andF—0  We have, as usual, a) branch,t<0, with decreasing

for z—+o. The typical shape of as a function ofzis  and a future curvature singularity &0 and a +) branch,

a= § n|t|. (66)

shown in Fig. 2. t>0, with increasinga and a past curvature singularity at
t=0. Our subsequent results will apply to both branches
V1. KINK EVOLUTION EQUATIONS although, for the concrete discussion, we will mostly focus

on the positive-time branch, where the universe expands. We
We will now study the time-evolution of the kink based find it convenient to use the scale factoy rather thart, as
on the effective four-dimensional action derived in the pre-the time parameter in the following. The remaining evolution
vious section. The collision of the kink with one of the equations can then be written in the form
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¢|”+F!]K¢J,¢K, :0’ (67) 0.2
0.1
1 lr 4 Jr
5Gud "¢ =3, (6.9 ol
where the prime denotes the derivative with respectrto w01 =)
Hence, the scalar fields', viewed as functions of the scale g S
factor &, move along geodesics in moduli space, with initial -02
conditions subject to the constraif&.8). 03
Let us now apply these equations to the moduli space
metric for the kink in a double-well potential, as computed in —0.4f
the previous section. To keep the formalism as simple as

possible we will focus on the case of a small kink width, that 035
is, e #u<1. The moduli-space metric is then specified by
Egs. (5.9, (5.10 and (5.9. Inserting this metric into Eq.
(6.7) we find

FIG. 3. The functionK andL which enter the effective equa-
tions of motion for the kink as a function affor ey ~1=10.
¢"+ e’ 'F2'?=0, (6.9 come, in fact, identical to the analogous equations derived
1 from the M-theory actior(2.13.
B8’ — §eoeﬁ‘¢F(1+eﬁ,u‘1K)z’2=O, (6.10 %n the other hand, faa<0 and away from the boundary
we have

Z’+(B' —¢' )2 +ePu KBz — %eBM*1L2'2=O, (6.11 F=0, K=4z, L=-4, .17
There are analogous results for 1 but we will focus on the
while the constraint6.8) turns into casez<0 for concreteness. Inserting these asymptotic ex-
pressions, we see that E¢6.9), (6.10 and(6.12 for ¢ and

B decouple from the equation. They become, in fact, the
equations for freely rolling radii and can be easily integrated
to give

1 3 1
Z¢/2+ ZB,2+§EOeﬂ7¢FZ’2:3' (612

The functionsK =K(3,z) andL=L(3,z) are related to de-
rivatives of F=F(3,z) and can be defined in terms df, $=3pgatdo, B=3pgatPo (6.18
Eq. (5.8, as follows:
where ¢y and B, are arbitrary constants and the expansion

F(B,2)=Jo[€’un Y (1-2)]-Jo(—€e’u"12), (6.13  powersp, andp satisfy the constraint

_(1-2)3[efu H(1-2)]+23p(—€p'2)
- F(B,2) ’

6.1
619 which follows from Eq.(6.12). The evolution of the kink can
Jiefun N 1-2)]- 3 (—efu"12) now be studied in the background of these freely rolling
= F(5.2) (6.15 radii. Inserting the above solutions fet and B into the

equation forz, Eq. (6.11), we find

The typical shape df has been indicated in Fig. 2. Figure 3
shows the shape &€ andL as a function o

The equations of motion are generally quite complicatedWhere
due to these functions. However, as the figures skouk
andL are nontrivial only in small regions around the bound-
aries with size set by.e™# (the width of the kink relative to Mozi (6.20)
the orbifold siz¢ while they are relatively simple outside efo
these critical regions. It is, therefore, useful to discuss the
asymptotic form of the equations of motion away from theis the width of the kink relative to the orbifold size initially
boundaries. First of all, foze[0,1] and away from the ata=0 and
boundaries we have

2 2 4
K(B.2) P5+305=35 (6.19

L(B.2)

2'+362' +2p, 'ePs(6pyz+2')2' =0,  (6.20

0=Pg—Py- (6.22

Hence, forz<0 and away from the boundary the evolution
Hence, for the kink being well inside the physical space theof the kink is described by the single differential equation
equations of motion(6.9—(6.12 greatly simplify and be- (6.20.

F=1, K=0, L=0. (6.16

066005-11



ANTUNES et al. PHYSICAL REVIEW D 68, 066005 (2003

VII. KINK DYNAMICS AND KINK-BOUNDARY 51=Pp1—Pypi=—5 (7.9
COLLISION
as follows from the maf7.5. The remaining integration

We should now study the solutions to the systér9)— constantspg, B, Zo andd are subject to the restriction

(6.12. Given that our main interest is in the collision of the
kink with a boundary, ideally, we would like to find solutions
with ze[0,1] initially which evolve towardsz—0. Given $o— Bo=In
the complexity of the equations, we cannot possibly hope to
achieve this analytically. Later, we will address this problempote thatz, specifies the initial position afwhich moves by
numerically. However, some progress can be made analyty finite coordinate distanagto its final positionzy+ d.
cally as long ag is away from the boundaries by using the  \hat is the relevance of these solutions in our context?
approximate equations fare[0,1] or z<0 discussed in the  First, we remind the reader that the above solutions play a
previous section. One may hope that finding such analyticajiouble-role as exact solution to the M-theory effective action
solutions for the evolution up to shortly before and after the(2.13 and approximate solutions to the kink effective theory
collision will lead to a correct qualitative picture of the col- jf ze[0,1] and away from the boundaries. In their former
lision process, roughly by gluing together these two types ofple they present another indication that the effective
solutions across the critical boundary region. As we will sey|-theory action(2.13, as it stands, is not adequate to de-
in our numerical analysis, this is indeed the case. scribe the collision process since the boundary valmes
Let us start by I.ooking at the cage[0,1]. As discusse_d =0,1 are in no way singled out. In other words,as de-
above, as long asis not too close to one of the boundaries, scriped by these solutions, passes through the boundary with-
the equations of motion reduce to the ones obtained from thgyt heing effected at all. For this reason, they will also be
M-theory effective action2.13. Their solutions have been yery useful for comparison with solutions to the kink evolu-

2€0d2
3

. (7.9

found in Ref.[27] and are explicitly given by tion equations, to explicitly see the boundary effect in the
38 e 135 latter. In their role as approximate solutions to the kink evo-
$=3py,iat3(Py, Py IN(1+e %) '+¢’0&7 ) lution equations foze[0,1] they tell us that the collision

can be arranged or avoided depending on a choice of initial
B 38135 conditions. Indeed, the initial positiary of the kink and the
B=3pgia+t3(Pgi=Pgi)in(l+e %% "+ By, coordinate distance by which it moves can be chosen arbi-
(7.2 trarily. Hence, for the choiceye[0,1] and z,+de[0,1]
(and both values away from the boundayidee entire evo-
_d lution of the kink is described by the solutions above and a
= 1+ e3%a tz (7.3 collision with the boundary never occurs. There is, however,
a caveat to this argument. While the kink becomes static
Asymptotically, fora— *, these solutions approach freely asymptoticqlly a_\lso the strong-coupling expansion parameter
roliing radii solutions forg and 8 while z becomes constant, € Necessarily divergef27], as can be seen from the above
The early(late) rolling radii solution is characterized by the Solutions. Therefore, we eventually lose control of our ap-
expansion powerp,,; andp.; (P.¢ andp (). Both sets of proximation and the effective theory breaks down. Clearl_y,
expansion powers are subjéct to the constraint from f[he arguments so _far, we cannot guarantee that th_e kink
remains static when this happens. In this paper, we will not
4 attempt to improve on this, for example by going back to the
p§’n+3pf3,n=§ (7.4  five-dimensional theory. Instead, we will be content with ar-
ranging a certain characteristic behavior, such as the kink
becoming static, to occur for some intermediate period of
time before we lose control over the effective theory.
1/1 1 Let us now analyze the evolution of the kink o0 and
p— _( ) _ (7.5  away from the boundarfthe case>1 is similar, of course
' 3\3 -1 In this case, the system is adequately described by the single
approximate equatio(6.20 for z while ¢» and 8 are decou-

wheren=i,f and are related by the linear map

(2o
Pyt Py,

Further, we have defined the quantity pled and evolve according to one of the rolling radii solu-
tions (6.18. Unfortunately, we did not succeed in integrating
8i=Ppi—Pg.i (7.6  thezequation in general. However, we can find a number of
partial solutions which, as we will see, provide a good indi-
which can be restricted, without loss of generality, to cation of the various, qualitatively different types og&vo-
lution.
8;>0 (—) branch, Let us consider the evolution afin the background of a
5<0 (+) branch. 7.7 special rolling radii solution with a static orbifold, that is,
. . . 2
We remark thats;, the analogous quantity at late times, is Pp=0, py=*— (7.10
given by V3
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where the two possible values pf, follow from Eq. (6.19.  rescaling ofz in Eq. (6.20 the type of evolution cannot

Equation(6.20 for z then simplifies to depend on the value @f,. The only possible dependence is,
1, therefore, orp, [recall that, for giverpg, p, is determined,
2'=3pgz' +2py2'“=0. (7.1)  up to a sign, from Eq(6.19] and the initial velocityv,

. . . ) =Z7'(a=0). Arelevant question in this context concerns the
The general solution to this equation can be readily found tQapjjity of the solutiorz= const which can be viewed as the
be limit of the exponentially converging case 1. Writing

2=29+ 5 >In 1+ Z—‘C)(e%“—l)}. (7.12 2=20+ {(a0), (7.15

3p,

wherez, andv are integration constants specifying the ini- wherez,<0, the linearized evolution equation foris, from
tial position and velocity ofz at =0, that is, zg=2z(« Eq. (6.20, given by

=0) andvg=2'(a=0). Here, we are interested in solutions

wherez, is negative and as close to the boundary as is com- ["'=—-3[5+ 4,u,6120p,3e3p3“]§’, (7.16
patible with the validity of Eq(7.12). In addition, we need

vo<0 sozevolves into the region well-approximated by Eq. we conclude that the solutian= const can only be stable if
(7.12). The parameter . is defined as

3 pp<0 and J=pz—py>0. (7.17)

¢ 2 It is only then that we expect the first case of convergeot

Let us di th ties of this solution f gPe realized.
el uS diSCuss the properties of this solution for-an expand- - 1ig can indeed by verified by a numerical integration of

ing universe starting with the cagg, = +2/\3. It is easy to Eq. (6.20. Solutions with converging exist if and only if
see from Eq(7.12 that, independent of the initial velocity he conditions(7.17) are satisfied and, in addition, if the
vo, zalways diverges te- at some finite value of the scale jnitia| velocity |v,| is smaller than a certain critical velocity

factor a, in this case. Fop,= —2/\/3, however, the situa- v.. A simple scaling argument shows that
tion is somewhat more complicated and depends on the re-

lation betweerjvo| and|v¢|. One has to distinguish the fol- —h 71
lowing three cases: ve=h(Pg.Py)ro (7.18

(i) lvol<|vel:  z converges exponentially to a constant. where h is a function which, from the numerical results,
(i) |vo|=|vel: z diverges to—x asa— . turns out to be of0(1) and slowly varying. What happens
(i) |vog|>|ve: zdiverges to— at a finite value ofx. outside the regiol(7.17)? If we leave this range by crossing
ps=0 we find for small positivep; and|v | below the criti-
Hence, we see that, plays the role of a critical velocity. cal velocity thatz still converges at first but then, in accor-
As we will confirm later, these three cases already represergtance with our analytic argument, develops an instability,
the three types of qualitatively different behavior which canwhich drives it to—c at finite «. The intermediate stable
be observed for the fult equation(6.20 or even the com- phase gradually disappears as one increpges-or pz>0
plete systen(6.9)—(6.12. and |vo| above the critical velocity one always finds diver-
We should remark, though, that the second chsg gence to— at finite «. Hence, forp;>0 we are always in
=|v¢| while typical in thatz diverges asr— is not repre-  the third case above. As we leave the regi@ri?) crossing
sentative as far as the nature of the divergence is concerned=0 we find casdii) is realized below and cagéi) above
While its divergence is linear i, the more characteristic the critical velocity. However, ag becomes more negative,
case is an exponential divergencesinThe existence of such the critical velocity decreases rapidly until we are left with

exponential divergences can be seen from the special solgaseiii) only.
tion In summary, the converging cage is only found in the

range(7.17) and for initial velocities smaller than a certain
critical value while otherwise always diverges to-  typi-
cally according to caséii) at finite scale factor.

We can now try to combine the information we have gath-
to Egs.(6.20. While this represents an exact solution for all ered about the evolution of the system before and after the
values ofp, andp; we have to restrict signs tz<<0 and  collision to set up criteria which will allow us to decide the
ps>0 so thatzis negative and moves towards=. Within ~ outcome of a collision process. Let us consider a particular
this range ofp,, andpg, however, the above solution shows solution (7.1)—(7.3) for the evolution inside the interva
an exponential divergence afas a— . €[0,1]. As we have already mentioned, the distance by

After having identified the qualitatively different types of which the kink moves is a free parameter so a collision may
z evolution we can now ask more systematically, based omever occur. Then, this solution describes the full evolution
thez equation(6.20), which type is realized for a given set of of the system as far as it is accessible within the four-
parameters and initial conditions. As can be seen from aimensional effective theory. On the other hand, if initial

HoPy 4
7= —F——e °Pp 7.1
T (7.14
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FIG. 4. Position modulusz for the kink (solid line and FIG. 5. Same as in Fig. 4 but witt{,= —0.14.
M-theory three-branédashed lingas a function of the scale factor .
a. The initial conditions have been chosenzmg=0.027,z,,=  one of the assumptions has broken down, the sum never gets
—0.12, Be=2.0, Bly=—0.72, po=16.14, ¢ = —3.23. above 0.2%.

In Fig. 4 we have an example of the first type of behavior,
conditions are chosen so that a collision does occur, the pafer a small negative value g8_,. After crossing the bound-
ticular solution(7.1)—(7.3) will determine the velocitieg/,,, ary atz=0 the kink relaxes to a stable constant solution. For
oi, and Bl right before the collision. We can then, ap- early times this solution matches the one obtained from the
proximately, identifyvo=2.,, 3p,=diy and Iz=pL, M-theory effective action for th_e same initial conditions.
and apply the previous results for the evolutiozat0. One  Nevertheless, as soon as the kink approaches the boundary
concludes that only for a very low-impact collision with the two start differing, converging to different asymptotic
smallz.,, and an orbifold size which, at collision, decreasesvalues. _ o . _
less rapidly than the dilaton, that &, <0 and ¢/, — Bl For a slightly higher value of the initial velocity the dif-

>0, doesz converge to a constant. Otherwizeliverges to fe(rje_nce IS ev e?_ rqorf_ strlkl_ng! ast_sho':/r\]/n tm Fig. . Inbthls thlse
—o and this can, in fact, be viewed as the generic case. z diverges In finite ume, indicating that we are above the

Of course, the criteria above may be somewhat inaCCurat(éritical velocity. This third case turns out to be the most

since we have ignored the complicated structure of the evogomrr)on, as aIre,ady opserved N ,the simplified s_y_stem. Only
lution equations near the boundary. We have, therefore, anr_'300|<0 andpeo - ¢C°'>0. an'dzco| below thg critical ve-
merically integrated the full systeri6.9—(6.12 to test the |OCity does the system avoid singular behavior. _
above criteria for the outcome of a collision process. It tuns N Fig. 6 we have an examplle for a solution corresponding
out that, in broad terms, the picture remains qualitatively thd® case 2. Here bot., and ¢, are negative and we are
same. below the critical velocity. As a consequence &g,

Starting withz near zero inside thig, 1] interval, we went ~ — ¢¢,<<0, z does not relax to a constant but its magnitude
around the ellipse &.,)%+3(BL,)?=12. Note that in this increases exponentially instead. In this case the solution has
case the exact identity cannot be observed since the cot@ be taken with care, sina #u quickly becomes large in
straint equatior{6.12) includes an extra term proportional to the exponential regime and the equations of motion stop pro-
(z..)%. Nevertheless the correction is always small since we/iding a reliable approximation.

setdqo— Beol tO @ large negative value. This makes the initial

value for e very small and allows us, for the cases where O N '~

grows, to follow the evolution for longer times untk=1

and the four-dimensional effective theory breaks down. We 0.1t N

also chose a large initig., so thate #u remains as small

as possible during the evolution, for the cases wih, -0.2} N

<0. In all cases we sefy=1 andu=0.2. N .

For each of these sets of initial conditions we then varied -0.3f
z;, from zero upwards and looked for changes in the large ;
time behavior ofz The numerical results were obtained by —0.4f
evolving Egs.(6.9—(6.11) using a fourth-order fixed step
Runge-Kutta method. The accuracy of the method was 05 .
checked by confirming that the constraint equation(BdL2 0 ! 2. 8 * s

was satisfied throughout the evolution. The individual terms

on the left hand side of E¢6.12 should sum to 3, and FIG. 6. Position modulusz for the kink (solid line and
typically after 2000 time-steps of size 0.01 the deviationMm-theory three-branédashed lingas a function of the scale factor
from this value was smaller than 0.01%. In the worst casesg. The initial conditions have been chosenzag=0.027, z,,=
where the equations of motion are no longer valid because 0.060, B.,=2.0, BLy=—1.77, pco=14.75, p.y= — 1.61.
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Finally we have checked that once we go above the critiy=(n+1)v the associated M-theory charges are
cal velocity,z always diverges for finiter. It is well known  (81,8,,83)=(n,—(n+1),1) corresponding to a model with
that in ¢* theory when a kink-antikink collision takes place, a single-charged three-brane.
above a certain limit velocity, they reflect and bounce back We have computed the effective four-dimensional action
[31] (for lower velocities they can either reflect or form a associated to a kink solution and have studied the time-
bound Stat}:‘a This behavior is a consequence of a resonancgvolution of a kink in this context. Our results show that,
effect between the kink pair and higher field modes, so weayenerically, a collision of the kink with a boundary will lead
should not be surprised to observe it in the context of ouf© @ transition between the two types of vacua mentioned
four-dimensional effective action. This does not yet exclude2bove. In other words, the kink will disappear after collision
the possibility of a bounce in a high-velocity regime which is Which corresponds to a transition between a state with a

accessible only in the context of the full five dimensionalSingle-charged three brane and a state without a three-brane.
theory, a question which is Current'y under investigationwe should stress that these results can Only be trusted as far

[32]. as the four-dimensional effective action is valid. In particu-
What do these results imply in terms of the five- lar, we cannot exclude the possibility of the kink bouncing
dimensional defect modéB.1)? As we have seen, # starts off the boundary for higher collision velocities. A future full
its evolution within the interval0,1] and subsequently col- 5D study of the problem will answer this question and clarify
lides with a boundaryat z=0) it is generically driven to  the nature of the collision process in general.
—o very rapidly. It should be stressed that thekinetic There are seve(al interesting directions which may bg pur-
energy remains finite at this singularity. Nevertheless, we d§u€d on the basis of these results. Clearly, our original
expect the effective four-dimensional theory to break downM-theory model as well as the associated defect model are
eventually, az— — . This is because some of the higher- r_ath_er simple and a numper of possible extension an_d modi-
order terms we have neglected are likely to grow vt a fications come to mmd. First of all, we may try to modlfy our
way similar to the lineaz term in Eq.(6.20. However, at defect mode_l by m_cludmg more than one addltlonall pulk
least for sufficiently small expansion parameteand e scalqr field, in particular to allow for exact BPS multikink
the four-dimensional theory will be valid some way into the Solutions. One may ask whether the defect model can be

singularity. Hence, we can conclude that a five-dimensionagMbedded into a five-dimensiorfdl=1 supergravity theory
kink, interpolating between the vacua=nv and y=(n as is the case for the original M-theory model. Further, there

+1)v which collides with the boundary a=0 effectively ~ a'€ & number of generalizations of five-dimensional heterotic

disappears and leaves the fiejdin the vacuum state M theory, su_ch as including a more genergl set of moduli
=(n+1)v (and an analogous statement holds for collisionfields [8], which one may try to implement into the defect

with the boundary az=1). From the M-theory perspective, model: For example, including the gengral set qf_ Kahler
such a process corresponds to a transition moduli would allow one to study topological transitions of

the underlying Calabi-Yau space through flops, in addition to
the types of topology change considered in this paper.

(B1.B2,B3)=(,—(n+1),1)—(B1,B2,B3) Perhaps the most interesting direction is to study the evo-
lution of more complicated configurations of our defect
=(n+1,—(n+1),0) (7.19  model (3.1). For example, one could envisage evolving the

field y from some initial (say thermal distribution to see
which type of brane-network develops at late tip32]. In
Barticular, one would like to answer the important question
whether the system can evolve from a brane-gas to a brane-
world state. If this is indeed what happens such an approach
VIII. CONCLUSION AND OUTLOOK will lead to predictions for the late-time brane-world that has

In this paper, we have presented a toy defect model fofVelved, given a certain class of plausible initial states. Con-
five-dimensional heterotic brane-world theories, where threeSretely, within the context of the simple model presented in
branes are modeled by kink solutions of a bulk scalar field thiS paper, we may expect predictions for the charge
We have shown that the vacuum states of this defect moddlliS case. As we have discussed, the values of these charges
correspond to a class of topologically distinct M-theory mod-&€ correlated with important properties of the theory such as
els characterized by the chargésand 3, on the boundaries (e type of gauge group. Optimistically, we may therefore
and the three-brane chargy. Specifically, we have seen hope that our approach leads to prediction for such important
that a state wherg equals one of the minimg= y,=nv of low-energy data, at least within a restricted class of associ-

the potential, whereneZ, corresponds to a state with ated M-theory compactifications.

charges B1,8,,83)=(n,—n,0), that is, an M-theory model
without three-branes. If, on the other hangdrepresents a ACKNOWLEDGMENTS

kink solution interpolating between the minimeg=nv and A.L. and N.D.A. are supported by the PPARC.

between two different sets of charges and, hence, topolog
cally different compactifications.
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