University of Sussex
Browse

File(s) not publicly available

Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor alpha family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase.

journal contribution
posted on 2023-06-07, 22:14 authored by Ian W Jeffrey, Martin Bushell, Vivienne J Tilleray, Simon Morley, Michael J Clemens
Exposure of mammalian cells to agents that induce apoptosis results in a rapid and substantial inhibition of protein synthesis. In MCF-7 breast cancer cells, tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand inhibit overall translation by a mechanism that requires caspase (but not necessarily caspase-3) activity. This inhibition is associated with the increased phosphorylation of eukaryotic initiation factor (eIF2) alpha, increased association of eIF4E with the inhibitory eIF4E-binding protein (4E-BP1), and specific cleavages of eIF4B and eIF2alpha. All of these changes require caspase activity. The cleavage of eIF4GI, which specifically needs caspase-3 activity, is dispensable for the inhibition of translation in MCF-7 cells. Similar experiments with embryonic fibroblasts from control mice and animals defective for expression of the double-stranded RNA-regulated protein kinase (PKR) reveal requirements for both caspase activity and PKR for inhibition of protein synthesis in response to TNFalpha. In contrast, treatment of cells with the DNA-damaging agent etoposide inhibits protein synthesis equally well in the presence of a pan-specific caspase inhibitor and in the presence or absence of PKR. Surprisingly, the ability of etoposide to cause increased association of eIF4E with 4E-BP1 does require PKR activity. However, our data suggest that neither increased phosphorylation of eIF2alpha nor increased [eIF4E.4E-BP1] complex formation is essential for the inhibition of overall translation by the DNA-damaging agent.

History

Publication status

  • Published

Journal

Cancer Research

ISSN

0008-5472

Issue

8

Volume

62

Page range

2272-2280

Pages

9.0

Department affiliated with

  • Biochemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC