University of Sussex
Browse

File(s) not publicly available

Efficient Exceedance Probability Computation For Randomly-Uncertain Duffing Oscillators

journal contribution
posted on 2023-06-08, 08:12 authored by Guoqing Gong, Julian DunneJulian Dunne
A method is developed to compute low-level response amplitude exceedance probabilities associated with uncertain nonlinear structures with random parameters and deterministic periodic forcing. Emphasis is focused on accurate and efficient computation in the tails of the exceedance probability distribution function associated with the largest possible response of one displacement variable for unspecified forcing frequency and normally distributed parameters. This gives a measure of system reliability when a large amplitude response exceedance of a specified threshold is designated as the mode of failure. The method exploits the First Order Reliability Method (FORM) in which the failure surface is constructed via the Harmonic Balance Method (HBM). This combined approach is tested on a Duffing oscillator with harmonic forcing and up to three uncertain parameters, for which the frequency of multiple-solution-maximum-amplitude is found directly, and the probability computed via the Hasofer-Lind reliability index. The accuracy of the proposed HBM-FORM, in the tails of the amplitude exceedance probability, is shown for the Duffing example to be acceptably accurate, whereas the efficiency is shown to be around 1000 times faster than Direct Integration and around 200 times faster than Monte Carlo simulation.

History

Publication status

  • Published

Journal

Journal of Sound and Vibration

ISSN

0022-460X

Volume

330

Page range

2354-2368

Department affiliated with

  • Engineering and Design Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC