University of Sussex
Browse

File(s) not publicly available

Alcohol induces DNA damage and the Fanconi anemia D2 protein implicating FANCD2 in the DNA damage response pathways in brain

journal contribution
posted on 2023-06-08, 08:33 authored by S L Rulten, E Hodder, Tamzin Ripley, D N Stephens, L V Mayne
Background: The largest cause of neurological damage to children is prenatal exposure to alcohol and chronic alcohol use in adults is associated with neurodegeneration, dementia and long-term behavioral changes. Microarray analysis identified the DNA damage response (DDR) gene, Fanconi anemia (Fanc) D2, to be robustly upregulated in mouse midbrain following 24-hour in vivo exposure to ethanol. In this study, we investigate the ability of ethanol to generate DNA strand breaks, predicted substrates for the Fanc pathway and the potential role of FANCD2 in the DDR to ethanol in brain.Methods: The effect of ethanol on FANCD2 mRNA levels was measured by quantitative real time PCR using mouse brain and human neuronal cells. FANCD2 protein levels and ubiquitination were measured by Western blotting and immunocytochemistry. DNA damage induction by ethanol/acetaldehyde was measured using the Comet assay and ¿H2AX immunocytochemistry. Levels of DNA and RNA synthesis were measured in cell strains using 3H-thymidine or 3H-uridine up-take.Results: Chronic exposure to ethanol induced FANCD2 in mouse midbrain in vivo and in the nucleus of human neuronal cells in culture. However, there was no concomitant increase in the amount of ubiquitinated FANCD2. Acetaldehyde also induced nonubiquitinated FANCD2 protein, and we were able to demonstrate the ability of acetaldehyde to generate DNA double strand breaks, lesions which normally induce ubiquitination of FANCD2. Ethanol also inhibited both RNA and DNA synthesis in proliferating cells consistent with effects on transcription and replication.Conclusion: In contrast to other DNA damaging agents, ethanol/acetaldehyde generated DNA strand breaks without inducing ubiquitination of FANCD2, despite increasing protein levels in the nucleus. These data are consistent with recent reports that suggest the Fanconi anemia pathway plays an important role in the adult brain in response to DNA damage. Further work is required to establish what this role is, in particular the potential function of nonubiquitinated FANCD2 and its role in the DNA damage response in postmitotic neurons and neural precursor cells.

History

Publication status

  • Published

Journal

Alcoholism: Clinical and Experimental Research

ISSN

0145-6008

Issue

7

Volume

32

Page range

1186-1196

Pages

11.0

Department affiliated with

  • Biochemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC