Accurate whole human genome sequencing using reversible terminator chemistry

Osborne, Mark, Bentley, David R, Balasubramanian, Shankar, Swerdlow, Harold P and et al, (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456 (721). pp. 53-59. ISSN 0028-0836

Full text not available from this repository.


DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence.We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from.303 average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.

Item Type: Article
Additional Information: Note: correspondence should go to David R. Bentley. Correspondence and requests for materials should be addressed to D.R.B. (Email:
Schools and Departments: School of Life Sciences > Chemistry
Subjects: Q Science
Depositing User: Mark Osborne
Date Deposited: 06 Feb 2012 21:10
Last Modified: 03 Oct 2012 11:31
📧 Request an update