University of Sussex
Browse
Mol._Cell._Biol.-2009-Breslin-4653-62.pdf (2.11 MB)

DNA 3 '-Phosphatase Activity Is Critical for Rapid Global Rates of Single-Strand Break Repair following Oxidative Stress

Download (2.11 MB)
journal contribution
posted on 2023-06-08, 09:26 authored by Claire Breslin, Keith CaldecottKeith Caldecott
Oxidative stress is a major source of chromosome single-strand breaks (SSBs), and the repair of these lesions is retarded in neurodegenerative disease. The rate of the repair of oxidative SSBs is accelerated by XRCC1, a scaffold protein that is essential for embryonic viability and that interacts with multiple DNA repair proteins. However, the relative importance of the interactions mediated by XRCC1 during oxidative stress in vivo is unknown. We show that mutations that disrupt the XRCC1 interaction with DNA polymerase beta or DNA ligase III fail to slow SSB repair in proliferating CHO cells following oxidative stress. In contrast, mutation of the domain that interacts with polynucleotide kinase/phosphatase (PNK) and Aprataxin retards repair, and truncated XRCC1 encoding this domain fully supports this process. Importantly, the impact of mutating the protein domain in XRCC1 that binds these end-processing factors is circumvented by the overexpression of wild-type PNK but not by the overexpression of PNK harboring a mutated DNA 3'-phosphatase domain. These data suggest that DNA 3'-phosphatase activity is critical for rapid rates of chromosomal SSB repair following oxidative stress, and that the XRCC1-PNK interaction ensures that this activity is not rate limiting in vivo.

History

Publication status

  • Published

File Version

  • Published version

Journal

Molecular and Cellular Biology

ISSN

0270-7306

Issue

17

Volume

29

Page range

4653-4662

Pages

10.0

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

First Open Access (FOA) Date

2016-03-22

First Compliant Deposit (FCD) Date

2016-11-10

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC