University of Sussex
Browse
Davidson,_Calvin_Ray.pdf (261.22 MB)

Towards the matter compiler: looking ahead to computer-controlled molecular assembly

Download (261.22 MB)
thesis
posted on 2023-06-08, 11:47 authored by Calvin Ray Davidson
This thesis addresses the concept of atomically precise manufacturing and aims to examine some likely aspects of the necessary infrastructure and knowledge that will be required from a theoretical standpoint. By way of introduction, I trace the history of Science Fiction’s influence on scientific research and examine some examples that have specifically inspired the thinking behind nanoscience and nanotechnology. More serious speculation, both in favour of and arguing against the possibility of bottom-up manufacturing is also discussed. I look at two schools of thought; directed assembly, typified by the ambition to assemble molecular structures piece by piece and self assembly, where networks of molecules form into arrays on substrates, imparting novel properties. Various methodologies and tools available to the nanotechnologist are examined. Density functional theory, as employed in the AIMpro code, and Molecular Mechanics are discussed, particularly in respect of their strengths and weaknesses for use in simulating the kind of nanoscale processes appropriate to nanomanufacturing. The theoretical basis behind scanning tunneling microscopes is also examined, with particular attention paid to their potential for upscaling in the future. Some components found within scanning tunneling microscopes are simulated using Density Functional Theory. Models of pure tungsten tips are studied at various levels of complexity in order to decide upon a reasonable compromise between accuracy and ease of computation. The nature of the interlayer interaction in few layer graphenes is examined and pristine and defected graphitic surfaces, are studied with a view towards their use as nano-workbenches. Their images as produced in scanning tunneling microscopes are simulated. Density Functional Theory is applied to organic molecules self-assembling on metallic substrates. Specifically, tetracene on a clean copper surface and on an oxygen-terminated copper surface is studied. Finally, I discuss the significance of the results of each section, taken individually and as a whole, and try to put it into perspective regarding the practicality of actually employing this paradigm realistically in the near future.

History

File Version

  • Published version

Pages

162.0

Department affiliated with

  • Chemistry Theses

Qualification level

  • doctoral

Qualification name

  • dphil

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2012-06-17

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC