Encoding of luminance and contrast by linear and nonlinear synapses in the retina

Odermatt, Benjamin, Nikolaev, Anton and Lagnado, Leon (2012) Encoding of luminance and contrast by linear and nonlinear synapses in the retina. Neuron, 73 (4). pp. 758-773. ISSN 0896-6273

Download (2MB) | Preview


Understanding how neural circuits transmit information is technically challenging because the neural code is contained in the activity of large numbers of neurons and synapses. Here, we use genetically encoded reporters to image synaptic transmission across a population of sensory neurons-bipolar cells in the retina of live zebrafish. We demonstrate that the luminance sensitivities of these synapses varies over 10(4) with a log-normal distribution. About half the synapses made by ON and OFF cells alter their polarity of transmission as a function of luminance to generate a triphasic tuning curve with distinct maxima and minima. These nonlinear synapses signal temporal contrast with greater sensitivity than linear ones. Triphasic tuning curves increase the dynamic range over which bipolar cells signal light and improve the efficiency with which luminance information is transmitted. The most efficient synapses signaled luminance using just 1 synaptic vesicle per second per distinguishable gray level.

Item Type: Article
Schools and Departments: School of Life Sciences > Neuroscience
Subjects: Q Science
Depositing User: Deeptima Massey
Date Deposited: 04 Oct 2013 12:09
Last Modified: 24 Mar 2017 16:45
URI: http://srodev.sussex.ac.uk/id/eprint/46587

View download statistics for this item

📧 Request an update