University of Sussex
Browse

File(s) not publicly available

Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence

journal contribution
posted on 2023-06-08, 16:37 authored by Timothy D Colmer, Ole Pedersen, Anne M Wetson, Tim Flowers
Habitats occupied by many halophytes are not only saline, but are also prone to flooding and yet surprisingly few studies have evaluated submergence tolerance in halophytes. Sediment, floodwater, and intra-plant O-2 dynamics were evaluated during tidal submergence for the leaf-succulent halophyte Suaeda maritime (L.) Dum. For S. maritime growing in soil just above the mud flat in a UK salt marsh, the soil was only moderately hypoxic just prior to tidal inundation, presumably owing to drainage and O-2 entry facilitated by frequent, large cracks. O-2 declined to very low levels following high tide. By contrast, mud flat sediment remained waterlogged, lacked cracks, and was anoxic. Plant O-2 dynamics were investigated using field-collected plants in sediment blocks transported to a controlled-submergence system in a glasshouse. Submergence during night-time resulted in anoxia within leaves, whereas during day-time O-2 was produced by underwater photosynthesis. The thin lateral roots of S. maritima presumably access some O-2 from hypoxic sediments, but could also experience transient episodes of severe hypokia/anoxia, especially as any internal O-2 movement from shoots would be small owing to the low gas-filled porosity in roots. Fermentative metabolism to lactate, producing some ATP in the absence of O-2, might contribute to tolerance of transient O-2 deficits. Lactate was high in root tissues, whereas ethanol production (tissue and incubation medium contents) was low, both in comparison with values reported for other species. Our findings demonstrate the importance of tolerance to transient waterlogging and submergence for the halophyte S. maritime growing in a tidal salt marsh. (C) 2012 Elsevier B.V. All rights reserved.

History

Publication status

  • Published

Journal

Environmental and Experimental Botany

ISSN

0098-8472

Publisher

Elsevier

Volume

92

Page range

73-82

Department affiliated with

  • Biology and Environmental Science Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2014-01-16

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC