
Computation of Lyapunov functions for nonlinear discrete 
systems by linear programming
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Given a nonautonomous discrete system with an equilibrium at the origin and a hypercube D 
containing the origin, we state a linear programming problem, of which any feasible solution 

parameterizes a continuous and piecewise affine (CPA) Lyapunov function V : ���� �\��R for the 
system. The linear programming problem depends on a triangulation of the hypercube. We prove 
that if the equilibrium at the origin is exponentially stable, the hypercube is a subset of its basin of 
attraction, and the triangulation fulfills certain properties, then such a linear programming problem 
possesses a feasible solution. We suggest an algorithm that generates such linear programming 
problems for a system, using more and more refined triangulations of the hypercube. In each step 
the algorithm checks the feasibility of the linear programming problem. This results in an algorithm 
that is always able to compute a Lyapunov function for a discrete system with an exponentially 
stable equilibrium. The domain of the Lyapunov function is only limited by the size of the 

�‡�“�—�‹�Ž�‹�„�”�‹�—�•�ï�•�� �†�‘�•�ƒ�‹�•�� �‘�ˆ�� �ƒ�–�–�”�ƒ�…�–�‹�‘�•�ä�� ���Š�‡�� �•�›�•�–�‡�•�� �‹�•�� �ƒ�•�•�—�•�‡�†�� �–�‘�� �Š�ƒ�˜�‡�� �ƒ��C2 right-hand side, but is 
otherwise arbitrary. Especially, it is not assumed to be of any specific algebraic type like linear, 
piecewise affine, etc. Our approach is a non-trivial adaption of the CPA method to compute Lyapunov 
functions for continuous systems to discrete systems. 

1. Introduction  

Consider the discrete dynamical system with an equilibrium at the origin: 

xk+1 = g(xk),where g ) and g(0) = 0. (1) 

Define the mapping g�•m : Rn �\��Rn for all m �Ð��N0 by induction through g�•0(x) := x and 

g�•(m+1)(x) := g(g�•m(x)) for all x �Ð��Rn. The origin is said to be an exponentially stable 

equilibrium of the system (1) if there exist constants �A�á���� �¹��0 and 0 < µ < 1 such that 

�æg�•m(x���æ���¶��µmM�æx�æ���ˆ�‘�”���ƒ�Ž�Ž���æx�æ���¸���A��and all m �Ð��N0. The set A := {x �Ð 

Rn : limsupm�\�ª�»���æg�•m(x���æ���±���r�����‹�•���…�ƒ�Ž�Ž�‡�†���‹�–�•���„�ƒ�•�‹�•���‘�ˆ���ƒ�–�–�”�ƒ�…�–�‹�‘�•�ä 

The stability of the equilibrium can be characterized by so-called Lyapunov functions, 

i.e. continuous functionals on the state-space decreasing along the system trajectories 

and with a minimum at the equilibrium. Further, Lyapunov functions additionally deliver 

a lower bound on the basin of attraction. For linear systems, i.e. g(x) = Ax for an A �Ð��Rn×n, 

the origin is an exponentially stable equilibrium of the system, if and only if all 

eigenvalues �I��of A fulfill | �I| < 1. In this case a quadratic Lyapunov function can be 
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constructed for the system by standard methods that ensure A = Rn and the system is said 

to be globally stable, cf. e.g. Lemma 5.7.19 in [38]. 

If g is nonlinear, then the classical approach is to consider the linearized system xk+1 = 
Axk, where A := Dg(0) is the Jacobian matrix of g at the origin. If the origin is an 
exponentially stable equilibrium of the linearized system the same holds true for the 
nonlinear system. However, in this case a quadratic Lyapunov function for the linear 
system is only a Lyapunov function for the nonlinear system in some local neighbourhood 
of the origin. Thus, in most cases, it gives a very conservative lower bound on the basin of 
attraction for the nonlinear system. This is unfortunate, because the size of the basin of 
attraction is often of great importance. For example in engineering, the system (1) is often 
a description of some machinery that has to be close to the equilibrium to work as 
�‹�•�–�‡�•�†�‡�†�ä�����‘�…�ƒ�Ž���•�–�ƒ�„�‹�Ž�‹�–�›���‘�ˆ���–�Š�‡���‡�“�—�‹�Ž�‹�„�”�‹�—�•���–�”�ƒ�•�•�Ž�ƒ�–�‡�•���‹�•�–�‘���ò�–�Š�‡���•�›�•�–�‡�•���…�ƒ�•���™�‹�–�Š�•�–�ƒ�•�†���ƒ�Ž�Ž��
�•�•�ƒ�Ž�Ž���‡�•�‘�—�‰�Š���’�‡�”�–�—�”�„�ƒ�–�‹�‘�•�•�ó���ƒ�•�†���–�Š�‹�•���’�”�‘�’�‡�”�–�›���‹�•���‘�„�˜�‹�‘�—�•�Ž�›���ƒ���•�‡�…�‡�•�•�‹�–�›���‹�ˆ���–�Š�‡���•�ƒ�…�Š�‹�•�‡�”�›��
is to be of any use. However, this property is clearly not sufficient and the robustness of 
the machinery, i.e. how large perturbations it can withstand, is of central importance. In 
social sciences or economics, for example, where models and parameters are inheritably 
subject to considerable uncertainty, the robustness of an equilibrium is of even greater 
importance. 

In such cases and many more, a Lyapunov function for the system, defined on a not 
merely local neighbourhood of an equilibrium, but with a domain that extends over a 
reasonable subset of the basin of attraction, gives useful and concrete information on the 
robustness of an equilibrium. Such Lyapunov functions are, however, much more difficult 
to construct than the local ones. For some general discussion on the stability of 
equilibrium points of discrete systems and Lyapunov functions see e.g. chapter 5 in [38] 
or chapter 5 in [1] and for a more advanced discussion on Lyapunov functions for discrete 
systems see [20]. For references to Lyapunov stability theory for differential inclusions, 
a generalization to discrete systems, see the references given in Section 6, where we 
discuss further research. 

Numerical methods to compute Lyapunov functions for nonlinear discrete systems 
have, for example, been presented in [11, 12], where collocation is used to solve 
�•�—�•�‡�”�‹�…�ƒ�Ž�Ž�›�� �ƒ�� �†�‹�•�…�”�‡�–�‡�� �ƒ�•�ƒ�Ž�‘�‰�� �–�‘�� ���—�„�‘�˜�ï�•�� �’�ƒ�”�–�‹�ƒ�Ž�� �†�‹�ˆ�ˆ�‡�”�‡�•�–�‹�ƒ�Ž�� �‡�“�—�ƒ�–�‹�‘�•�� ���v�s���� �—�•�‹�•�‰�� �”�ƒ�†�‹�ƒ�Ž��
basis functions [8, 40] and in [4, 23], where graph algorithms are used to compute 
complete Lyapunov functions [9, 35]. For nonlinear systems with a certain structure 
there are many more approaches in the literature. To name a few, in [34] the 
parameterization of piecewise-affine Lyapunov functions for linear discrete systems with 
saturating controls is discussed, [30] is concerned with the computation of Lyapunov 
functions for (possibly discontinuous) piecewise-affine systems, and in [10] linear matrix 
inequalities are used to compute piecewise quadratic Lyapunov functions for discrete 
piecewise-affine systems. 

In this paper we adapt the continuous and piecewise-affine (CPA) method to compute 
Lyapunov functions for continuous systems, first presented in [21, 22] and in a more 
refined form delivering true Lyapunov functions in [32, 33], to discrete systems. 
Originally the CPA method for continuous systems was only guaranteed to compute 



 

Lyapunov functions for systems with an exponentially stable [17] or an asymptotically 
stable [18] equilibrium, if an arbitrary small neighbourhood of the equilibrium was cut 
out from the domain. In [13��16] this restriction could be removed by introducing a fan-
like triangulation near the equilibrium. A similar approach is used for the discrete CPA 
method in this paper. The non-locality of discrete systems, however, implies that a 
fundamentally different methodology must be used. The CPA method for continuous 
systems has been extended to nonautonomous switched systems [19] and to autonomous 
differential inclusions [2, 3]. The CPA method for discrete systems can, at least with some 
limitation, be extended to difference inclusions and we discuss this in Section 6. The 
details of this extension would, however, go beyond the scope of this paper and are a 
matter of ongoing research. 

In this paper, we state in Definition 2.9 a linear programming feasibility problem with 
the property, that a solution to the problem parameterizes a Lyapunov function for the 
system, cf. Theorem 2.11. The domain of the Lyapunov function is only limited by the size 
�‘�ˆ���–�Š�‡���‡�“�—�‹�Ž�‹�„�”�‹�—�•�ï�•���„�ƒ�•�‹�•���‘�ˆ���ƒ�–�–�”�ƒ�…�–�‹�‘�•���ƒ�•�†���•�‘�–���„�›���ƒ�”�–�‹�ˆ�‹�…�‹�ƒ�Ž���„�‘unds due to the approach 
as in the classical approach. The exponential stability of an equilibrium of the system (1) 
is equivalent to the existence of a certain Lyapunov function for the system as shown in 
Lemma 4.1 and we use this in Theorem 4.2 to prove that the feasibility problem always 
possesses a solution if the parameters of the problem are chosen in a certain way. Because 
there are algorithms, e.g. the simplex algorithm, that always find a feasible solution to a 
linear programming problem if one exists, and because we can adequately scan the 
parameter space algorithmically, cf. Definition 3.1, this delivers an algorithm that is 
always able to compute a Lyapunov function, of which the domain is only limited by the 
basin of attraction, for a system of the form (1) possessing an exponentially stable 
equilibrium. 

The structure of the paper is as follows: In Section 2 we define the Lyapunov functions 
and the triangulations we will be using and then we state our linear programming 
problem in Definition 2.9. Then, in Theorem 2.11, we prove that a feasible solution to the 
linear programming problem parameterizes a CPA Lyapunov function for the system. In 
Section 3 we deliver an algorithm in Definition 3.1 that systematically generates linear 
programming problems as in Definition 2.9. In Section 4 we prove the existence of a 
certain Lyapunov function for systems with an exponentially stable equilibrium in 
Lemma 4.1 and then use it in Theorem 4.2 to prove that the algorithm from Definition 3.1 
will deliver a feasible linear programming problem for any such system. Thus, we can 
always compute a CPA Lyapunov function for a system with an exponentially stable 
equilibrium. In Section 5 we give an example of our approach to compute CPA Lyapunov 
functions and in Section 6 we give some concluding remarks and ideas for future research. 

Notations 

For a vector x �Ð��Rn we write xi or (x) i for its i-th component. 

For x �Ð��Rn and p �·���s���™�‡���†�‡�ˆ�‹�•�‡�� �–�Š�‡���•�‘�”�•�ä�����‡���ƒ�Ž�•�‘���†�‡�ˆ�‹�•�‡���æx�æ��

= �» 



 

maxwherei�Ð��p�s�«,21,...,n+}q�«|x1i|= 1. We will repeatedly use the H¨older inequality, and the 
norm equivalence relations |x · y�����¶���æx�æp�æy�æq, 

�æx�æp �¶���æx�æq �¶��nq�«1�«p�«1�æx�æp�ˆ�‘�”���ª�»���·��p > q �·���s���ƒ�•�†��x �Ð��Rn. 

�æ���Š�‡�æinduced matrix norm�¶���æ���æ���æ���æ�æ�� �	�� �æp �‹�•�� �†�‡�ˆ�‹�•�‡�†�� �„�›�Ð�æA�æp n=we denote bymax�æx�æp=1 

�æAx�æp. Clearly 

Ax pA p x p. For a symmetric matrix P Rn×  and  

the minimal and maximal eigenvalue of A, respectively. Further, if P is additionally 
�’�‘�•�‹�–�‹�˜�‡���†�‡�ˆ�‹�•�‹�–�‡�á���‹�ä�‡�ä���‹�–�•���‡�‹�‰�‡�•�˜�ƒ�Ž�—�‡�•���ƒ�”�‡���ƒ�Ž�Ž���•�–�”�‹�…�–�Ž�›���Ž�ƒ�”�‰�‡�”���–�Š�ƒ�•���œ�‡�”�‘�á���™�‡���†�‡�ˆ�‹�•�‡���–�Š�‡�¾ 

�‡�•�‡�”�‰�‡�–�‹�…���•�‘�”�•���æx�æP := xTPx. The estimate for all x �Ð��

Rn follows immediately from this definition. 

Let (x0,x1,...,xm) be an ordered (m �ª�� �s���«�–�—�’�Ž�‡�� �‘�ˆ�� �˜�‡�…�–�‘�”�•�� �‹�•��Rn. The set of all convex 

combinations of these vectors is denoted by co(x0,x1,...,xm) := 

. The vectors (x0,x1,...,xm) are called 

affinely independent if  implies �Ii = 0 for all i = 1,...,m. 
If (x0,x1,...,xm) are affinely independent, then the set co(x0,x1,...,xm) is called an m-simplex 
and the vectors x0,x1,...,xm are said to be its vertices. 

An inequality such as x �¶��y, where x and y are vectors, is always to be understood 

componentwise, i.e. xi �¶��yi for all i. 

The set of m-times continuously differentiable functions from an open set O to a 

 
set P is denoted by Cm(O,P). We denote the closure of a set D by D, its interior by 

 
D�•, and its boundary by �ÀD := D \ D�•. Finally, B�A���‹�•�� �†�‡�ˆ�‹�•�‡�†���ƒ�•�� �–�Š�‡���‘�’�‡�•�� �æ���	�� �æ2-ball with 

center 0 and radius �A, i.e. B�A��:= {x �Ð��Rn �ã���æx�æ2 �¸���A}. 

Remark 1. It is unusual to define a simplex as the convex combination of the vectors of an 
ordered tuple, because the resulting set is obviously independent of the particular order 
of the vectors. For our purposes their order is, however, important and this definition has 
several advantages, cf. Definition 2.7 and Remark 9. 

2.The linear programming problem  

In this paper we are interested in exponentially stable equilibria, i.e. the moduli of the 
eigenvalues of the Jacobian of g from (1) at the equilibrium at the origin are all strictly 
less than one. We will show that if the origin is an exponentially stable equilibrium of (1), 



 

then a CPA Lyapunov function can be computed algorithmically by using linear 
programming. Because we are only interested in exponentially stable equilibria at the 
origin we only need to consider a specific type of Lyapunov function that characterizes 
this kind of stability. Further, it is advantageous to define the set N of those 
neighborhoods of the origin that we will repeatedly use in this paper. This is done in the 
next two definitions. 

Definition 2.1 .Denote by N the set of all subsets �����?��Rn that fulfill: 

i)  D is compact. 

ii)  The interior D�• of D is a connected open neighborhood of the origin. 

iii)  D = D�•. 

A Lyapunov function for a system is a continuous function V �ã�� ���� �\��R, with a local 

minimum at the equilibrium at the origin, which is decreasing along system trajectories, 

i.e. V (g(x)) < V (x) for all x �±�Ï��0. Because the dynamics of a discrete system are nonlocal, 

i.e. g(x) is not necessarily close to x�á���–�Š�‡���’�”�‘�’�‡�”�–�›���ò�†�‡�…�”�‡�ƒ�•�‹�•�‰���ƒ�Ž�‘�•�‰���•�›�•�–�‡�•���–�”�ƒ�Œ�‡�…�–�‘�”�‹�‡�•�ó��

needs some additional consideration compared to the continuous case. 

One must either assume, that D is forward invariant or, more practically, restrict the 

demand V (g(x)) < V (x) to all x in a subset O of D, such that x �Ð�������‹�•�’�Ž�‹�‡�•��g(x�����Ð�����ä�����‡��

follow the second approach. Definition 2.2 . Let D,O �Ð�����á�������@�����á���ƒ�•�†���æ���	���æ,�æ���	���æ���„�‡���ƒ�”�„�‹�–�”�ƒ�”�›��

norms on Rn. 

�Û 
A continuous function V �ã�������\��R is called a Lyapunov function for the system (1) if it 

fulfills: 

i)  g(x�����Ð�������ˆ�‘�”���ƒ�Ž�Ž��x �Ð�����ä 

ii)  V (0) = 0 and there exist constants a,b > 0 such that a�æx�æ���¶��V (x�����¶��b�æx�æ���ˆ�‘�”��all x �Ð�����ä 

iii)  There exists a constant c > 0 such that V (g(x�������«��V (x�����¶���«c�æx�æ���ˆ�‘�”���ƒ�Ž�Ž��x �Ð�����ä 
�Û 

Remark 2. Because all norms on Rn are equivalent and the constants a,b,c > 0 are 

�ƒ�”�„�‹�–�”�ƒ�”�›�á���–�Š�‡���’�ƒ�”�–�‹�…�—�Ž�ƒ�”���•�‘�”�•�•���æ���	���æ���ƒ�•�†���æ���	���æ���ƒ�”�‡���•�‘�–���‘�ˆ���“�—�ƒ�Ž�‹�–�ƒ�–�‹�˜�‡���„�—�–���‘�•�Ž�›���‘�ˆ 
�Û 

quantitative importance. 

Remark 3. The origin is an exponentially stable equilibrium of the system (1), if and only 

if it possesses a Lyapunov function in the sense of Definition 2.2. In this case every 



 

connected component of a sublevel set V �«1([0 ,r]), r > 0, that is compact in O�•, is a subset 

�‘�ˆ���–�Š�‡���‡�“�—�‹�Ž�‹�„�”�‹�—�•�ï�•���„�ƒ�•�‹�•���‘�ˆ���ƒ�–�–�”�ƒ�…�–�‹�‘�•�ä�����‡�–���=���¹��0 be such that �=�æx�æ���¶���æx�æ���ˆ�‘�”���ƒ�Ž�Ž��x �Ð��Rn. 

The sufficiency follows 
�Û 

directly from the estimate V (g(x�������¶�����s���«���=�…���„)V (x), which implies V (xk�����¶�����s���«���=�…���„)kV 

(x0), and the necessity follows by Lemma 4.1 below. The proposition about the sublevel 

sets follows, for example, by Theorem 2.2 in [11]. 

The idea of how to compute a CPA Lyapunov function for the system (1) given a 

�Š�›�’�‡�”�…�—�„�‡�������Ð�����á���‹�•���–�‘���•�—�„�†�‹�˜�‹�†�‡�������‹�•�–�‘���ƒ���•�‡t T := {S�K��: �K��= 1,2,...,N} of n-simplices S�K, such 

that any two simplices in T intersect in a common face or are disjoint, cf. Definition 2.3. 

Then we construct a linear programming problem in Definition 2.9, of which every 

feasible solution parameterizes a CPA function V , i.e. a continuous function that is affine 

on each simplex in T , cf. Definition 2.4. Then we show in Theorem 2.11 that V is a 

Lyapunov function for the system in the sense of 

Definition 2.2. 
Because we cannot use a linear programming problem to check the conditions a�æx�æ���¶��

V (x�����¶��b�æx�æ���ƒ�•�†��V (g(x�������«��V (x�����¶���«c�æx�æ���ˆ�‘�”���•�‘�”�‡���–�Š�ƒ�–���ˆ�‹�•�‹�–�‡�Ž�›���•�ƒ�•�›��x, 
�Û 

the essence of the linear programming problem is how to ensure that this holds for all 
x �Ð�������ƒ�•�†���ƒ�Ž�Ž��x �Ð�������?�����á���”�‡�•�’�‡�…�–�‹�˜�‡�Ž�›�á���„�›���‘�•�Ž�›���—�•�‹�•�‰���ƒ���ˆ�‹�•�‹�–�‡���•�—�•�„�‡�”���‘�ˆ���’�‘�‹�•�–�•��x. 

We start by defining general triangulations and CPA functions, then we define the 
triangulations we use in this paper and derive their basic properties. 

Definition 2.3 (Triangulation .) Let T be a collection of n-simplices S�K��in Rn. T 

eitheris called a triangulation of the setS�K���ê��Sµ �±���Î���‘�”��S�K��and SDµ intersect in a common 
face. The latter means,:= �ëS�K�Ð����S�K��if for every S�K,Sµ �Ð�������á���K���Ï= µ, 

with 

S  )and S  , 
that there are permutations �=��and �>��of the numbers 0,1,2,...,n such that z

�á���™�Š�‡�”�‡���r���¶��k < n, 
and 

S�K���ê��Sµ = co(z0,z1,...,zk). 

Note that according to Definition 2.3, two simplices S�K��and Sµ with different indices �K��
�±�Ï��µ are different, so every simplex is only counted once. 



 

Definition 2.4 (CPA function.���� ���‡�–�� ���� �„�‡�� �ƒ�� �–�”�‹�ƒ�•�‰�—�Ž�ƒ�–�‹�‘�•�� �‘�ˆ�� �ƒ�� �•�‡�–�� ���� �?��Rn. Then we can 

define a continuous, piecewise affine function P �ã�������\��R by fixing its values at the vertices 

of the simplices of the triangulation T . More exactly, assume that for every vertex x of 

every simplex S�K���Ð�������™�‡���ƒ�”�‡���‰�‹�˜�‡�•���ƒ���—�•�‹�“�—�‡���”�‡�ƒ�Ž���•�—�•�„�‡�”��Px. In particular, if x is a vertex 

of S�K���Ð�������ƒ�•�†��y is a vertex of Sµ �Ð�������ƒ�•�†��x = y, then Px = Py. Then we can uniquely define 

a function P : �����\��R through: 

i) P(x) := Px for every vertex x of every simplex S�K���Ð�� ���� �ä�� �‹�‹����P is 

affine on every simplex S�K���Ð�������ä 

The set of such cont�‹�•�—�‘�—�•�á�� �’�‹�‡�…�‡�™�‹�•�‡�� �ƒ�ˆ�ˆ�‹�•�‡�� �ˆ�—�•�…�–�‹�‘�•�•�� ���� �\��R fulfilling i) and ii) is 

denoted by CPA[T ]. 

Remark 4. If P �Ð�� ������������ ���� �–�Š�‡�•�� �ˆ�‘�”�� �‡�˜�‡�”�›��S�K���Ð�� ���� �–�Š�‡�”�‡�� �‹�•�� �ƒ�� �—�•�‹�“�—�‡�� �˜�‡�…�–�‘�”��a�K���Ð��Rn and a 

unique number b�K���Ð��R, such that P(x) = aT�K��x + b�K��for all x �Ð��S�K. Further, if x 

, then x can be written uniquely as a convex 

combination x 1 for all i = 0,1,...,n, and = 1, of the 

vertices of S�K��and 

. 

Remark 5. For the construction of our triangulations we use the set Sn of all permutations 
of the numbers 1,2,...,n, and the standard orthonormal basis e1,e2,...,en 

one ifof Rn. For a seti �Ð���
���ƒ�•�†���‡�“�—�ƒ�Ž���–�‘���œ�‡�”�‘���‹�ˆ�
���±�����s,2,...,}i / , we define the characteristic 

�ˆ�—�•�…�–�‹�‘�•�Ð���
�ä���	�—�”�–�Š�‡�”�á���™�‡���—�•�‡���–�Š�‡���ˆ�—�•�…�–�‹�‘�•�•��R�VJJ:(iR)n�‡�“�—�ƒ�Ž���–�‘�\��Rn, 

defined by 
n 

RJ(x) := �Ã���«�s���VJ(i)xiei. 

i=1 

RJ(x) puts a minus in front of the coordinate xi of x whenever i �Ð���
�ä 



 

Remark 6. The two parameters b and K of the triangulation TK,bstd, cf. Definition 2.5, refer 

�–�‘���–�Š�‡���•�‹�œ�‡���‘�ˆ���–�Š�‡���Š�›�’�‡�”�…�—�„�‡�����«b,b]n covered by its simplicial fan at the origin and to the 

fineness of the triangulation, respectively. For schematic pictures of some of these 

triangulations in 2D see Figure 1. For similar pictures in 3D see Figure 1 in 

[15]. 

Definition 2.5 (Standard triangulations.) We are interested in three general 
triangulations T std, TKstd, and TK,bstd of Rn. 

(1)  The triangulation T std consists of the simplices 

Sz  

 

.(b) T1std,b . (c) T2std,b . 

Figure 1. Schematic pictures in 2D of some of the triangulations used in this paper. 

for all z , and all �P���Ð��Sn, where 

x  (2) 

(2)  Choose a K �Ð��N0 and define the hypercube . For every simplex

 , such that x  

and  consider the n-simplex S0,zJ�P��:= 

 
co T std. TKstd is a triangulation of. The set of all such simplicesHK, cf. Lemma 2.6. 

S0,zJ�P��is denoted by K 

(3)  Now choose a constant b > 0 and scale the simplices in the triangulation TKstd of 

the hypercube HK and the simplices in the triangulation T std outside of the open 

hypercube  with the mapping x �y�\���Ox, where �O��:= 2�«Kb. We denote by TK,bstd 

the resulting set of n-simplices, i.e. 



 

. 
Remark 7. The triangulations T std, TKstd, and TK,bstd are the same as in [16], but TKstd is 

defined in a more constructive way. This more constructive definition is advantageous 

for the implementation of the linear programming problem in Definition 2.9. However, 

we need to prove that TKstd is actually a triangulation of HK. For future use we prove a 

slightly more general result. The vectors Km and Kp in the following lemma are 

 and (2  respectively for HK from Definition 

Note that the condition (3) in the following lemma is equivalent to assuming that 
exactly one vertex of the simplex is in K�• and all others are in �ÀK, see Remark 8. 

Lemma 2.6. Let K  be vectors of negative and positive integers respectively, i.e. 
Km < 0 < Kp, and define K := {x �Ð��Rn : Km �¶��x �¶��Kp}. 

Let T denote the set of n-simplices , obtained by taking 

a simplex Sz std cf. (2), such that 

x  and , (3) 

and replacing the vertex x . 
Then T is a triangulation of K in the sense of Definition 2.3. 

Proof. We start the proof by noting that (x if �P���s�����Ï�Ð��

J and (xziJ�P)�P(1) = (Km)�P(1) for all i = 1,...,n if �P���s�����Ð���
�ä�����•�†�‡�‡�†�á���–�Š�‹�•���•�–�ƒ�–�‡�•�‡�•�–���ˆ�‘�Ž�Ž�‘�™�•���†�‹�”�‡�…�–�Ž�›��

from (2). 

Now, we show that the intersection of two different simplices in T is the convex 

combination of their common vertices. For this let S1,S2 �Ð�������„�‡���ƒ�”�„�‹�–�”�ƒ�”�›�ä 

Then there are z, , and �P�á�P�Û �Ð��Sn such that 

S  and S  . 
Since T std is a triangulation, we have 

S1 �ê��S2 �ê���ÀK = SzJ�P���ê��Sz�ÛJ�Û�P�Û �ê���ÀK = co(z1,z2,...,zk), 

where z1,z2,...,zk are the common vertices of SzJ�P��and Sz�ÛJ�Û�P�Û in �À���ä�����ˆ���r���¶��k < n, then we have 

S1 �ê��S2 = co(0,z1,z2,...,zk). Indeed, it is clear that S1 �ê��S2 �@���…�‘��0,z1,z2,...,zk). On the other 

hand, let x �Ð��S1 �ê��S2 \ { 0}. As 0,x �Ð�������ƒ�•�†�������‹�•���…�‘�•�˜�‡�š�á���–�Š�‡�”�‡���‹�•���ƒ���K���·���s���•�—�…�Š���–�Š�ƒ�–��x�Û := �Kx �Ð��

�ÀK. 

We will now show that x�Û �Ð��S1 �ê��S2. Since x �Ð��S1, we have 



 

x  

with 0 and �I0 �±���r�Ï . Then 

. 

We show that 1. Indeed, assuming �P���s�����Ï�Ð�� �
�� �ƒ�•�†�� �—�•�‹�•�‰�� �–�Š�‡�� �•�–�ƒ�–�‡�•�‡�•�–�� �ƒ�–�� �–�Š�‡��

beginning of the proof, ( , since �Kx �Ð�����ä��
A similar argument holds for �P���s�����Ð���
���ƒ�•�†��S2. 

Now, since x�Û �Ð��S1 �ê��S2 �ê �ÀK, we have 

k 

x�Û = �Kx = �Ãµizi 

i=1 

with = 1 and thus 

x  

where 1 0 since �K���·���s�ä�����Š�‹�•���•�Š�‘�™�•���–�Š�ƒ�–��x �Ð���…�‘��0,z1,z2,...,zk). 

Case k = n 

Now we consider the case k = n. We will show that z = z�Û, J = J�Û, and �P��= �P�Û, i.e. that we do 

not obtain the same simplex twice. 

By (3), we have x  and  for all i = 1,2,...,n. 

Now consider ; hence, there is an n�Û �Ð�����s,2,...,n} such that 

(i) ( x  or (ii) ( x . 

We only consider case (i); case (ii) can be dealt with similarly. Since x , we 
have (x ; in particular �P(1) = n�Û. By assumption there is an i�Û �Ð�����s,2,...,n} 
such that 

x  .(4) 

This implies n�Û �Ï�Ð���
�Û, since (x  

There are three cases, either (i) �P(1) = �P�Û(1), (ii) �P���s�����Ð�����P�Û(2)�á�P�Û(3)�á�ä�ä�ä�á�P�Û(i�Û)} or (iii) �P(1) 

�Ð�����P�Û(i�Û + 1)�á�P�Û(i�Û + 2)�á�ä�ä�ä�á�P�Û(n)}. We need to exclude cases (ii) and 



 

(iii). 

In case (iii), the �P(1) = n�Û-th component of 

R  

is equal to (Kp)n�Û + 1, i.e. the point is not in �ÀK �� a contradiction. 

In case (ii), let �P(1) = �P�Û(j�Û�����™�‹�–�Š���t���¶��j�Û �¶��i �Û, then the �P(1) = n�Û-th component of 

x   

is equal to (Kp)n�Û �ÀK (as it is not ), hence, there is an 
m�Ûm�±�Ï����mn�Û�Ûwithsuch that (i)m�Û �Ð���
�Û. Let us restrict ourselves to the first case, the second is 

dealtj �«1 m�Û = (K )m�Û with m�Û �Ï�Ð���
�Û or (ii)  

(K with similarly. Then, as i�Û �·��j�Û, we have 

(5) 

Also, since n�Û �±�Ï m�Û and , we have 

 
which is in contradiction to (4) and (5). 

This leaves case (i), i.e. �P(1) = �P�Û(1), 

RJ (z + e�P(1)) = RJ�Û (z�Û + e�·�P�Û(1)), �· 

RJ (z) = RJ�Û (z�Û), and, in particular, z = z�Û since z 0 and z�Û 0. Further, these results imply that 

for every i �Ð�����t,3,...,n} there is an i�Û �Ð�����t,3,...,n} such that  and that these 

equations are equivalent to 

)for i = 2,3,...,n. 

Clearly, this is only possible if J = J�Û and �P��= �P�Û. 

Express a boundary point as a convex combination 

Second, we show that for every x �Ð���ÀK there is a z , and �P���Ð��Sn 

such that x co

. We do this by explicitly deriving appropriate z,J, and �P��for x. 



 

Define y = (|x1|,|x2|,...,|xn|)T and let J be such that RJ(x) = y, and then also RJ(y) = x. Since 

x �Ð���ÀK, there is an n�Û �Ð�����s,2,...,n} such that (i) xn�Û = (Kp)n�Û with n�Û �Ï�Ð���
���‘�”�����‹�‹����xn�Û = (Km)n�Û with 

n�Û �Ð���
�ä 

Define z  by 

zi := 0, if yi = 0, yi �« �s���¶��zi < yi, if yi > 
0. 

for all i �Ð�����s,2,...,n}. In particular zn�Û := yn�Û �« 1 and Km < RJ(z) < Kp, i.e. RJ(z���� �Ð�����•, by the 

construction of z and because Km < 0 < Kp. Finally, set w := y �« z�ä�����Š�‡�•���r���¶��wi �¶���s���ˆ�‘�”���ƒ�Ž�Ž��i = 

1,2,...,n. Let �P���Ð��Sn such that �P(1) = n�Û and 

1 = w�P(1) �·��w�P(2) �·��...w�P(n) �·���r. 

We define x ). To show that x  we define 

�Ik = w�P(k) �« w�P(k+1) �·���r���ˆ�‘�”��k = 1,...,n �« 1 and �In = w�P(n) �·���r. 

We have = 1 and x . Indeed, we show that the 

k-th component of , which shows the statement by 
applying RJ on both sides. 

 
where we have used = 1. This shows the statement. 

Express any point as convex combination 

Third, we show that for every x �Ð�������–�Š�‡�”�‡���‹�•���ƒ���•�‹�•�’�Ž�‡�š��
S 

�Ð�������•uch that x �Ð��S. If x = 0 this is 

obvious. If x �±�Ï��0 there is a �@���·���s���•�—�…�Š���–�Š�ƒ�–���@x �Ð���ÀK. Above we showed that this implies that 

�@x can be written as a convex combination, 

, from which x  

{ 



 

follows. 

Remark 8. In Lemma 2.6 we considered simplices in (3) with one vertex in K�• and all other 

vertices in �ÀK, and we specifically assumed that the vertex inside 

. This assumption is no loss of generality, since if a simplex S := 

std has one vertex in K�• and all other vertices in �ÀK, then 

the vertex inside K is necessarily x . To see this observe the following: 

Let x  be the vertex of S not lying on the 

boundary. We want to show that i = 0. If i �±���r�Ï���á���–�Š�‡�•�� , so 

there is an n�Û �Ð�����s,2,...,n} such that (i) n �Ï�Ð���
���‘�”�����‹�‹�� 

. Let us consider the first case, the second case is 

dealt with similarly. Since x , we have , i.e. 

or (Kp)n�Û = (xziJ�P)n�Û < (Kp)n�Û if �P(i�����±�Ï n�Û. 

In both cases we obtain a contradiction. 

Definition 2.7 . For an n-simplex S = co(x0,x1,...,xn) we define its shape matrix XS �Ð��Rn×n 

through 

XS := (x1 �« x0,x2 �« x0,...,xn �« x0)T 

Thus, the matrix XS is defined by writing the entities of the vector xi �« x0 in the i-th row of 

XS for i = 1,2,...,n. 

For a triangulation T given as a collection of simplices with ordered vertices we refer to 

the set {XS : 
S 

�Ð�����������ƒ�• the shape matrices of the triangulation T . 

Remark 9. Definition 2.7 is the reason why we defined a simplex as the convex 
combination of the vectors in an ordered tuple. The resulting simplex is not dependent 
on the particular order of the vectors, however, the shape matrix is. 

Remark 10. Notice, that because S is an n-simplex, the vectors (x0,x1,...,xn) are affinely 
independent, i.e. the shape matrix XS is nonsingular. 

Lemma 2.8. The set of the shape matrices of T std is finite. For any fixed K �Ð��N0 and b > 0 

the set of the shape matrices of TK,bstd is finite. 



 

Proof. Notice that SzJ�P��and Sz�ÛJ�Û�P�Û have the same shape matrix if J = J�Û and �P��= �P�Û. As there 

are 2n �†�‹�ˆ�ˆ�‡�”�‡�•�–���•�—�„�•�‡�–�•���
���?�����s,2,...,n} and n! different permutations �P��of {1,2,...,n} there can 

be no more than 2nn! different shape matrices for 

T std. 

The second statement of the lemma now follows immediately, because the simplicial 
fan at the origin in TK,bstd is finite. 

Now we can formulate our linear programming feasibility problem for the system (1). 
It is followed by several explanatory and clarifying remarks. 

Definition 2.9 (The linear programming problem.) Consider the system (1). Let 

F > 0 be a real number and 2 �¶��NI < NO < ND be natural numbers. Define 

I := NI · F, O := NO · F, and D := ND · F 

and the hypercubes 
, �ƒ�•�†���	���ã�±�����«F,F]n. 

���‡�–�� �–�Š�‡�� �•�—�•�„�‡�”�•�� �t�� �¶��NI < NO < ND be chosen such that x �Ð�� �	�� �‹�•�’�Ž�‹�‡�•��g(x���� �Ð�� ���� �ƒ�•�†��x �Ð�� ����

implies g(x) �Ð�����á���‹�ä�‡�ä 

and�•�ƒ�š���æg(x���æ �¶��D. (6) 

�æx�æ�»�¶O �» 

���Ž�‡�ƒ�”�Ž�›�������@�������@�������@���	���ƒ�•�†���	���…�‘�•�–�ƒ�‹�•�•���–�Š�‡���‘�”�‹�‰�‹�•���ƒ�•���ƒ�•���‹�•�•�‡�”���’�‘�‹�•�–�ä 
Let K �Ð��N0 and consider the triangulation TK,Fstd of Rn from Definition 2.5. Define 

T := {S �Ð����K,FstdD : S �ê�����ë�• �±�Ï �Î}. D T (7) 

lation ofThen, by the definitions ofD in the sense of Definition 2.3. Before we present the 
linear programmingTK,Fstd and , clearly S�Ð����S =and is a triangu- 

problem we need a few specifications and definitions. 

With A := Dg(0) as the Jacobi matrix of g at the origin and Q �Ð��Rn×n an 

arbitrary positive definite matrix, we solve the discrete time Lyapunov equation 



 

(9) 

(10) 

, (11) 

and letbe constants fulfilling 

if S�K��

�?�� �	��
and

 (13) 

if S�K���?�����ä (14) 

z  

max{Hmax EF := GF 

(hI\F )2/F,2h�ÀF,P}.
 (18) 

Note that all the constants are strictly positive. 
We are now ready to state the linear programming problem. The variables of the linear 

programming problem are C and Vx for all vertices x of all of the simplices S1,S2,...,SN in T 

. The variable C is an upper bound on the gradient of the function V �ã�������\��R and for every 

vertex x; the variable Vx is its value at x, i.e. V (x) = Vx, cf. Definition 2.4. 

The constraints of the linear programming problem are: 

(I)  For every S�K��= co(x0,x1,...,xn�����Ð�������á��S�K���?�����á���™�‡���•�‡�– 

Vxi = VP(xi) for i = 0,1,...,n, 

where VP is the local Lyapunov function from (9). 
(II)  For every S�K��= co(x0,x1,...,xn�����Ð�������™�‡���†�‡�•�ƒ�•�† 

Vxi �·��VP(xi) for i = 0,1,...,n. (19) 

ATPA = P �« Q 

for a positive definite P �Ð��Rn×n, cf. Remark 12. We define 

(8) 

for every S�K���Ð�������†�‡�ˆ�‹�•�‡  

h�K���ã�±���•�ƒ�š���æx �« y�æ2 
x,y�ÐS�K 

(12) 

See Remark 11 for an interpretation of the constants B�K��and G�K. 
We further define 

 

h:= max{h�K��: S�K���?������\ F �•}, 
I\F  

(15) 

h�ÀF,P �ã�±���•�ƒ�š���æx �« y�æP : x �Ï= 0 and y �Ï= 0 vertices of an S�K���?���	��, (16) 

G := max{G�K��: S�K���?���	��,and F (17) 



 

(III)  For every S�K��= co(x0,x1,...,xn) we define the vectors 

w �K��:= (Vx1 �« Vx0,Vx2 �« Vx0,...,Vxn �« Vx0)Tand , 

where XS�K��is the shape matrix of S�K, cf. Definition 2.7, and we demand 

�æ�ÏV�K�æ1 �¶��C. (20) 

These constraints are linear in the variables of the linear programming problem, 
cf. Remark 13. 

(IV) For every S�K��= co(x0,x1,...,xn�����Ð�������á��S�K���?�����á���ƒ�•�†���‡�˜�‡�”�›��i = 0,1,...,n, there is a simplex 

Sµ �Ð���…�‘��y0,y1,...,yn�����Ð�������•�—�…�Š���–�Š�ƒ�–��g(xi�����Ð��Sµ. This means that we can write g(xi) 

uniquely as a convex combination g(xi) =  of the vertices of Sµ, cf. 

Remark 14. 

If S�K���?������\ F �• we demand 

. (21) 

If S�K���?���	���™�‡���†�‡�•�ƒ�•�† 

for i = 1,...,n. (22) 

Note, that we do not demand (22) for i = 0, cf. Remark 14. 

We have several remarks before we prove in Theorem 2.11 that a feasible solution to 
the linear programming problem in Definition 2.9 parameterizes a CPA Lyapunov 
function for the system in question. For some of the remarks and for later we need the 
following results, proved, e.g., in Proposition 4.1 and Lemma 4.2 in [3]. 

Proposition 2.10. Let co(x0,x1,...,xk���� �?��Rn be a k-simplex, define S := co(x0,x1,...,xk), h := 

maxi,j=0,1,...,k �æxi �« xj�æ2, and consider a convex combination �����?��

be an open set with 
S 

�?����. 

a) If g �ã�������\��R is Lipschitz-continuous with constant L on U, i.e. |g(x�����«��g(y�������¶ 

L�æx �« y�æ2 for all x,y �Ð����, then 



 

, b) If g �Ð�� C2(U,R) and 
where H(z) is the Hessian of g at z, 

S 
then 

 

Further useful bounds are obtained by noting that 

. 

Remark 11. For every S�K��= co(x0,x1,...,xn�����Ð�������á��S�K���?���	�á���™�‡���Š�ƒ�˜�‡���„�›�����”�‘�’�‘�•�‹�–�‹�‘�•���t�ä�s�r���™�‹�–�Š���–�Š�‡��

constants B�K��in (13) for every convex combination x : 

. 
Now let S�K���Ð�����ä���	�‘�”���ƒ�•���‹�•�–�‡�”�’�”�‡�–�ƒ�–�‹�‘�•���‘�ˆ���–�Š�‡���…�‘�•�•�–�ƒ�•�–�•��G�K��in (14), notice that for any x,y 

�Ð��Rn there is an i �Ð�����s,2,...,n} and a vector zxy on the line segment between x and y such 

that 

�æg(x�����«��g(y���æ�»��= |gi(x�����«��gi(y)| = |�Ï gi(zxy) · (x �« y�������¶���æ�Ïgi(zxy���æ1�æx �« y�æ�». 

have for S�K���Ð���� Hence, we 

. (23) 
x, 

x 

Now let S�K���Ð���	�ä�����•���’�ƒ�”�–�‹�…�—�Ž�ƒ�”�á���•�‹�•�…�‡��g(0) = 0, we have for every x �Ð��S�K���?���	�á��x �±�Ï��0, that 

and �æg(x���æ �¶��G F. (24) 
�» F 



 

Remark 12. The equation (8) is called the discrete Lyapunov equation. For its properties 
cf. e.g. Lemma 5.7.19 in [38]. It can be solved numerically in an efficient way [6]. See also 
[29] and [5]. 

Remark 13. Consider a simplex S ) in the triangulation T . The 

components of the vector �ÏV�K��are linear in the variables  and by 

introducing the auxiliary variables  �‹�–���‹�•���‡�ƒ�•�‹�Ž�›���•�‡�‡�•���–�Š�ƒ�–���æ�ÏV�K�æ1 �¶��C can be 

implemented by the constraints 

where C1�K��+ C2�K��+ ... + Cn�K���¶��C and 

(�ÏV�K) i is the i-th component of �K. There are several different reasonable 

�™�ƒ�›�•���–�‘���ˆ�‘�”�…�‡���–�Š�‡���Ž�‹�•�‡�ƒ�”���…�‘�•�•�–�”�ƒ�‹�•�–�•���æ�ÏV�K�æ1 �¶��C for �K��= 1,2,...,N. 

One is to set . In this case, there are no 
auxiliary variables needed and we will do this in the proof of Theorem 4.2, where we show 
that we can always compute a CPA Lyapunov function if the equilibrium at the origin is 
exponentially stable. 

The other extreme is to include all the auxiliary variables Ci�K, i = 1,2,...,n and �K��= 1,2,...,N, 
in the linear programming problem. Here, one might succeed in computing a CPA 
Lyapunov function with larger simplices than when using fewer or no auxiliary variables. 

In between these two extremes one could e.g. neglect the �K��dependence of the auxiliary 
variables  and merely introduce the auxiliary variables C1,C2,...,Cn 

( �K) i 

�¶i for i = 1,2,...,n and = 1,2 . 

Remark 14. Consider the constraints (IV) in Definition 2.9. Clearly g(xi) can be in more 

than one simplex of T . However, the representation  in (21) and 

(22) does not depend on the particular simplex Sµ = co(y0,y1,...,yn) such that 

 because T is a triangulation. Further, (22) cannot be fulfilled for 

i = 0 because E > 0. F 

We now prove that a feasible solution to the linear programming problem in Definition 
2.9 parameterizes a CPA Lyapunov function for the system in question. 

Theorem 2.11. If the linear programming problem from Definition 2.9 has a feasible solution, 

i.e. the variables C and Vx have values such that all the constraints are fulfilled, then the 

function V �ã�� ���� �\��R, parameterized using the values Vx and the triangulation T as in 



 

Definition 2.4, is a Lyapunov function in the sense of Definition 2.2 for the system (1) used 

to construct the linear programming problem. 

Proof. For every x �Ð�������–�Š�‡�”�‡���‹�•���ƒ���…�‘��x0,x1,...,xn�����Ð�������•�—�…�Š���–�Š�ƒ�–��x . 

���Š�‡���…�‘�•�˜�‡�š�‹�–�›���‘�ˆ���–�Š�‡���•�‘�”�•���æ���	���æP immediately delivers 

 

and the definition of V as a piecewise affine function such that V (0) = 0 renders the 

existence of a constant b > 0 such that V (x�����¶��b�æx�æP for all x �Ð�������‘�„�˜�‹�‘�—�•�ä�����Š�‡���†�‡�•�ƒ�•�†�‹�•�‰��

part of the proof is to show that V (g(x�������«��V (x�����¶���«�=�æx�æQ for all x �Ð�����ä 

To do this we first show the auxiliary result that |V (z�����«��V (y�������¶��C�æz �« y�æ 
�» 

for all y,z �Ð�����ä�����‡�ˆ�‹�•�‡��r µ := y + µ(z �« y) for all µ �Ð�����r,1]. Since D is convex, the line segment 

{r µ : µ �Ð�����r,1]} is contained in D and clearly there are numbers 

0 = µ0 < µ1 < µ2 < ... < µK = 1 and �K1�á�K2�á�ä�ä�ä�á�KK such that r µ �Ð��S�Ki for all 

µ �Ð����µi�«1,µi], i = 1,2,...,K. Now r 1 = z and r 0 = y and for every i = 1,2,...,K 

we have  for x  
(20), 

(25) 

A direct consequence is that if y,z �Ð��S�K���?�����á���–�Š�‡�•��g(y),g(z�����Ð�������ƒ�•�†���„�›�����t�u�� 

|V (g(z�������«��V (g(y���������¶��C�æg(z�����«��g(y���æ�»���¶��CG�K�æz �« y�æ�»���¶��CG�Kh�K. (26) 

We now show that V (g(x�����«V (x�����¶���«�=�æx�æQ for all x �Ð�����ä�����‡���ˆirst show this for all x �Ð������

\ F �• and then for all x �Ð���	�ä 

Case 1: Let x �Ð������\ F �• be arbitrary. Then there is an S�K��= co(x0,x1,...,xn�����?������\ F �• such that 

x �Ð��S�K, which in turn implies that x can be written as a convex combination of the vertices 

of the simplex, x . But then by (26) and the constraints (21) we have 



 

 

(27) 

Case 2: We now come to the more involved case x �Ð���	�ä�����‡�–��x �Ð���	���„�‡���ƒ�”�„�‹�–�”�ƒ�”�›�ä�����Š�‡�•���–�Š�‡�”�‡��

is a simplex S�K��= co(x0,x1,...,xn�����?���	���•�—�…�Š���–�Š�ƒ�–��x �Ð��S�K��and x can be written as a convex sum 

of its vertices, x . However, now x0 = 0, which also implies g(x0) = 0 and V 

(g(x0)) = 0. Therefore 

, (28) 

, and (29) 

. (30) 

We extend V (g(x�������«��V (x) to three differences a), b), and c), namely 



 

and then we find upper bounds for a), b), and c) separately. a) By 
(29), (26), 
and 

Proposition 2.10 we get 

(32) b) Set zi := g(xi) for i = 0,1,...,n and z . We show that 

. (33) 
A norm is a convex function, so VP�á���…�ˆ�ä�����{���á���‹�•���…�‘�•�˜�‡�š�ä�����•�‹�•�‰�����t�{�����ƒ�•�†�����u�r�����™�‡���‰�‡�–���„�›���
�‡�•�•�‡�•�ï�•��
inequality that 

 

For i = 1,2,...,n we have z . 

Thus we can write zi as a convex combination of the vertices of S , and 
by the definition of V �‘�•���������…�‘�•�•�–�”�ƒ�‹�•�–�������������ƒ�•�†���
�‡�•�•�‡�•�ï�•���‹�•�‡�“�—�ƒ�Ž�‹�–�›���™�‡���‰�‡�– 

) (35) 
Together, (34) and (35) imply 



 

 
i.e. the first inequality in (33) holds true. 

To prove the second inequality in (33) we first show two auxiliary inequalities, (38) and 

(40). If z �Ð������\ F, then we can use Proposition 2.10 to gain upper bounds on V (z�����«��VP(z). 

The Hessian matrix of VP at z is given by 

, (36) 
from which, with Hmax from (11), 

, (37) 

follows. There is an Sµ = co(y0,y1,...,yn�����?������\ F �• such that z �Ð��Sµ and we can write z as a 

convex combination of the vertices of S . Hence, by 

Proposition 2.10, z �Ð������\ F implies 

(38) 
If z �Ð���	�á���–�Š�‡�•���–�Š�‡�”�‡���‹�•���ƒ�•��Sµ = co(y0,y1,...,yn�����?���	���•�—�…�Š���–�Š�ƒ�–��z �Ð��Sµ. Define ui := yi �« y1 for i = 

1,2,...,n. We can write z as a convex combination of the vertices of Sµ and since y0 = 0 this 

now implies 

z . (39) 
Now 

 
Hence, z �Ð���	���‹�•�’�Ž�‹�‡�• 

. (40) 



 

We now prove the second inequality in (33), considering two complementary cases: 

, then by (38), 
(40), 1, and the definition of E we have 

F 

(41) 

If , it follows from 

(42) 
�„�›�����t�v�����–�Š�ƒ�–���æz�æ �¶��F, i.e. z �Ð���	�ä�����Š�—�•�á���™�‡���…�ƒ�•���™�”�‹�–�‡��z as in formula (39). Note �» 

that the vertices y1,y2,...,yn in that formula are not only in the bound�ƒ�”�›���‘�ˆ���	���±�����«F,F]n, a 

paraxial hypercube, but are also all points at the same side, i.e. there is an n�Û �Ð�����s,2,...,n} 

such that (yi)n�Û = F for all i = 1,2,...,n or (yi)n�Û �±���«F for all i = 1,2,...,n (cf. similar argument at 

the beginning of the proof of Lemma 2.6). Therefore, 

 
which together with (42) implies 

. 
Hence, by (40) and the definition of E we get F 

. 
This inequality and (41) prove the second inequality in (33). c) The 
constraints (22) imply 

(43) 

. 

We now finish the proof by applying the results from a), b), and c), i.e. (32), (33), and 
(43), to (31) and obtain 



 

(44) 
 

Remark 15. One might be tempted to assume that the CPA approximation of a convex 
function is also convex. As this would imply that the term b) in (31) was negative, the 
factor E in the constraints (22) would not be necessary and the proof F 
of Theorem 2.11 would be much shorter. However, in general this is not true as shown by 
the following counterexample: 

Consider the convex function P(x,y�����y�\��(x y)(0 1)(y) 

3 0 x 

and triangles with the 
vertices 
(0,2),���«�s,1),(1,1) and 
(0,0),���«�s,1),(1,1). For 
the 

CPA approximation P2) = 4, 

P  (0,0) = 0 but Remark 16e . It remains an interesting question 

if the convexity of the CPA approx-e e P(0,2) + 0. and the triangulation in a useful way for 

our application.e imation P of a convex function P can be characterized in terms of the 

function P 

Remark 17. A practical note for the implementation of the linear programming problem: 
Theorem 2.11 still holds true if (10), (11), (12), (15), (16), and (17) are replaced by 

, 



 

, 

hI\ F �·���•�ƒ�š��h�K��: S�K���?������\ F �•}, h�ÀF,P �·���•�ƒ�š���æx �« y�æP : 

x �Ï= 0 and y �±�Ï��0 vertices of an 
S 

�?���	��, and GF �·��

max{G�K��: S�K���?���	��. 

3. The Algorithm  

In the next definition we present an algorithm that generates linear programming 
problems as in Definition 2.9 for the system (1). It starts with a fixed triangulation of a 
�Š�›�’�‡�”�…�—�„�‡�� ���� �Ð�� ���� �ƒ�•�†�� �”�‡�ˆ�‹�•�‡�•�� �–�Š�‡�� �–�”�‹�ƒ�•�‰�—�Ž�ƒ�–�‹�‘�•�� �™�Š�‡�•�‡�˜�‡�”�� �–�Š�‡�� �Ž�‹�•�‡�ƒ�”�� �’�”�‘�‰�”�ƒ�•�•�‹�•�‰��
problem does not possess a feasible solution. The refinement is such that eventually a 
linear programming problem is generated, which possesses a feasible solution, whenever 
the origin is an exponentially stable equilibrium of the system and D is in its basin of 
attraction. This is proved in Theorem 4.2 in the next section, the main contribution of this 
paper. 

Definition 3.1 (The algorithm.) The main idea of the algorithm is to define a sequence of 
finer and finer grids, indexed by K. They become finer both near the origin, so a finer and 
smaller fan, as well as outside. Hence, O and D will not depend 

onFor the algorithm we first initialize a few parameters. LetK, whereas FK and IK do 

depend onn Kn. Q �Ð��Rn×n be an arbitrary, positive definite matrix and let P �Ð��R × be the 

unique solution to the discrete Lyapunov equation (8). We fix a real number F0 > 0 and 

positive integers NI,0,NO,0, and ND,0. Define 

I0 := NI,0F0,O0 := NO,0F0, D0 := ND,0F0, 

I0 �ã�±�� ���«I0,I0]n, ���� �ã�±�� ���«O0,O0]n, ���� �ã�±�� ���«D0,D0]n, F0 �ã�±�� ���«F0,F0]n. The number NI,0 must be 

chosen such that NO,0 > NI,0 �·���t���ƒ�•�† 

. 
This last inequality implies 

, 
cf. Remark 11. 

The numbers NO,0 and ND,0 must be chosen such that ND,0 > NO,0 and g���������?�����á���‹�ä�‡�ä�á 



 

. (45) 

For all K �Ð��N0 we define 

FK := 2�«KF0,NI,K := NI,0, IK := NI,KFK, 

NO,K := 2KNO,0, OK := NO,KFK = NO,0F0, ND,K := 2KND,0, 

DK := ND,KFK = ND,0F0, FK �ã�±�����«FK,FK]n, IK �ã�±�����«IK,IK]n. 

We fix constants B and G such that 

and 

Now, for any K �Ð��N0 we can construct a linear programming problem as in Definition 

2.9 with F := FK, NI := NI,K, NO := NO,K, and ND := ND,K. Then the constants I, O, and D in 
Definition 2.9 are given by I := IK, O := OK = O0, and D := DK = D0. Note especially that F := 
FK and I := IK change with K but O and D do not. Thus, 

(45) holds true with O0 replaced by OK and D0 replaced by DK. 

Further, for all K �Ð��
Nbecauseand 
therefore 

. 
Hence, the matrices Q and P and the parameters 

NO,K, and ND := ND,K are suitable to initialize the linear programming problem in Definition 

2.9. Denote by LK such a linear programming problem initialized with these parameters, 

the triangulation TK := TK,Fstd K, and B�K��:= B and G�K��:= G for all simplices S�K��in the 

triangulation of D as defined in (7). The algorithm is as follows: 

1. Set K = 0. 

2. Construct the linear programming problem LK as described above. 

3. If the linear programming problem LK has a feasible solution, then use it to 

parameterize a CPA Lyapunov function V �ã�������\��R for the system (1) as in Theorem 

2.11. If the linear programming problem LK does not have a feasible solution, then 
increase K by one, i.e. K �Z��K + 1, and repeat step 2. 

Remark 18. If better estimates for the B�K�ï�•���ƒ�•�†��G�K�ï�•���–�Š�ƒ�• the uniform bounds B and G in the 
algorithm are available, then these can and should be used. 



 

Remark 19. Note that the scaling factor �O��from item (3) in Definition 2.3 for the simplicial 

complex TK = TK,Fstd K is �O��= 2�«KFK = 2�«2KF0. 

The number of simplices in the simplicial fan at the origin grows exponentially. Indeed, 

it is not difficult to see that the simplicial fan of TK+1 contains 2n�«1-times the number of 

simplices in the simplicial fan of TK. 

4. Main result  

First, we state a fundamental lemma, the results of which are used in the proof of Theorem 
4.2, which is the main contribution of this paper. It ensures the existence of a certain 
Lyapunov function for the systems (1) if the origin is an exponentially stable equilibrium. 
It states results similar to Theorem 3.3 in [14] for continuous, planar systems, adapted to 
n-dimensional discrete systems. 

Lemma 4.1. Consider the system (1) and assume that the origin is an exponentially stable 

equilibrium of the system with basin of attraction A. Let Q �Ð��Rn×n be an arbitrary positive 

definite matrix, A := Dg(0) be the Jacobi matrix of g at the origin, and P �Ð��Rn×n be the unique 

(positive definite) solution to the discrete Lyapunov equation ATPA�«P �±���«Q. Let �����Ð������be a 

subset of A. Then there exists a function W �ã�������\ R that satisfies the following conditions: 

�Ð���� 

.
 (47) 

Then there is a constant A < �ª�»��such that 

A 
for all 0 �¸���B���¸���B�Û. (48) 

for 

all x �Ð����. Here �á���‹�ä�‡�ä���–�Š�‡���=���ˆ�”�‘�•�����w�v���ä 
�‡�������Š�‡�”�‡���‹�•���ƒ���…�‘�•�•�–�ƒ�•�–���A���¹��0 such that   

W(x�����±���æx�æP for all x �Ð�����A. (50) 

Proof. The idea of how to construct the function W is as follows: Locally, at the origin, W 
is given by the formula (50) and away from the origin by 

a) A is an open set and W �Ð��C2 (A \ { 0},R). 

b) There is a constant C�Û < �ª�»��such that 

sup �æ�ÏW(x���æ2 �¶��C�Û. x�Ð��\{ 0} 

c) ���‡�–���B�Û := minx �À �æx�æ2. For all 0 �¸���B���¸���B�Û define 

(46) 

d)   

W(x�����·���æx�æP and W(g(x�������«��W(x�����¶���«�t�=�æx�æQ (49) 



 

the formula 0 a constant. In between, W is a smooth 
interpolation of these two. First we work this construction out and then we show that the 
constructed function fulfills the claimed properties a), b), c), d), and e). 

For completeness we show that A is open: Since the equilibrium at the origin is 

exponentially stable, there is an �Ë > 0 such that B�Ë �?�����ä�����ƒ�•�‡���ƒ�•���ƒ�”�„�‹�–�”�ƒ�”�›��x �Ð�����ä�����Š�‡�”�‡���‹�•���ƒ��

k �Ð��N such that g�•k(x) �Ð�����Ë/ 2. By the continuity of g�•k there is a �A���¹��0 such that for all y �Ð��

x + B�A��we have g�•k(y�����Ð��g�•k(x) + B�Ë/ 2 �?�����Ë �?�����á���‹�ä�‡�ä��y �Ð�����ä�����Š�‹�•���™�‘�—�Ž�†���Š�‘�Ž�†���‡�“�—�ƒ�Ž�Ž�›���–�”�—�‡���‹�ˆ��

the origin was merely asymptotically stable. 

Definition of W: Since P is a solution to the discrete Lyapunov equation 

(8), it follows immediately thatx�æ2P is a Lyapunov function for the 

linear system xk+1 = Axk, satisfying 

2 
. 

Q 

Since g is differentiable at the origin, the function) := (g(x�����«��Ax)/ �æx�æ2 fulfills lim x�\ 0�%(x) 

= 0. Simple calculations give, with ) := g(x�����«��Ax �±���æx�æ2�%(x), that 

x (51) 
= [�%�Û(x) + Ax]TP[�%�Û(x) + Ax�����«��xTPx 

�¶��

�«�æx�æ2Q �ª���æ�%�Û(x���æ2�æP�æ2 ���æ�%�Û(x���æ2 �ª���t�æA�æ2�æx�æ2) 

�±���«�æx�æ2Q �ª���æx�æ22 �	���æ�%(x���æ2�æP�æ2 ���æ�%(x���æ2 �ª���t�æA�æ2) 

and it follows that there is a �A�Û > 0 such that  for all x �Ð��B�A�Û. 

Hence, with  we have, because  

and  for all x �Ð�����A�Û \ { 0}, that 

e �« �æ 

e 



 

for 
all x 

�Ð��
B�A�Û \ { 0}. Thus 

VP���������������«��VP���������¶���«�t�=�æx�æQ  (52) 

for all x �Ð�����A�Û. 

Consider the function We �ã�������\��R, 

We (x . (53) 

It follows from the exponential stability of the equilibrium that the series on the right-
hand side is convergent and in the proof of Theorem 2.8 in [11] it is shown that 

 W clearly g 

�·�� �æx�æ2Q (54) 

k=0 k=1 
and 

�ª�» 

W(x) = �Ã���æg�•(k+1)(x���æ2Q �« �æg�•k(x���æ2Q) �±���«�æx�æQ2 (55) W(g(x)) �« 

k=0 

for allNow choose anx �Ð�����ä��r > 0such that {x �Ð��Rn : VP(x�����¶��r�����?�����A�Û and define the sets Rn 

: VP(x) < r/ 2} and E1 := {x �Ð 

E2 := {x �Ð��Rn : VP(x) > r�����ê����. 

See Figure 2 for a schematic picture of the sets E1, D \(E1 �ë��2), and E2 �ê�����–�Š�ƒ�–���™�‡���™�‹�Ž�Ž���—�•�‡��

in the rest of the proof. 

e 

e e 



 

 

Figure 2. Schematic figure of the sets E1, D \ (E1 �ë����2), and E2 �ê����. 

Let �O 1]) be a non-decreasing 

function, such that and �O( . Such a 

�ˆ�—�•�…�–�‹�‘�•���…�ƒ�•���„�‡���…�‘�•�•�–�”�—�…�–�‡�†���„�›���•�–�ƒ�•�†�ƒ�”�†���•�‡�–�Š�‘�†�•���‘�ˆ���r���¶���O(x�����¶���s���ˆ�‘�”���ƒ�Ž�Ž��x �Ð��Rn, �O(x) = 0 for 

all ex �Ð����1, and �O(x) = 1 for all x �Ð����2. partitions of unity, cf. e.g. [39]. Then �O(x) := �O(VP(x)) 

fulfills ), 

Define 
�>�� := 

max�æ�� �æ
 W(x). 
Note that this definition ofe �>��and W�> e x 

(56) 

and (57) 

�« W�>(x�����¶��2r �« �v���æx�æ2Q + �±���«�t�=�æx . (58) 

We define for all x �Ð����e the function W through 



 

W(x) := �O(x)W (x) + (1 �O(x))VP(x). (59) 

We will now check that the function ) satisfies the 
and We�>��are in C2 ) then properties a)��e). a) Because �O, VP, 

so is W. 

b)  For every x �±�Ï 0 we have �ÏVP(x) = Px/ �æx�æP so for every x �±�Ï 0 

. 
Because �ÏW is continuous on the compact set D \ E1 and W and VP coincide on E1 sup 

�æ�ÏW(x���æ2 = max{ max1 �æ�ÏW(x���æ2, sup1 �æ�ÏVP(x���æ2} < �ª�»��x�Ð��\{ 0} x�Ð��\ E x�Ð����\{ 0} and there is a 

constant C�Û such that (46) holds true. 

c) Denote by pmax the maximum absolute value of the entities of P, i.e. pmax := 

. Define 

 . A := max
For an 
arbitrarybe such 
that 

To show (48), we distinguish between the two cases y �Ð������\ E1 and y �Ð����1. In the first case, 

(48) clearly holds true because 

Now assume that y �Ð�� ��1. In this case W(x) coincides with VP(x���� �±�� �æx�æP in a 

neighbourhood of y and we have the formula (36) for its Hessian matrix. By definition, A�B��

is the maximum of the absolute values of the entities of the Hessian HW(x) for 

x �Ð�� ����\ B �B��and because we have 

. (60) 
Hence, estimate (48) holds true for all 0 . 

d)  For all x �Ð�� ��1 we have W(x) = 

VP(x) �±���æx�æP. For all x �Ð����\E 1 we have by 

(59) that W W�>��and VP. Hence, by (56) we have 



 

for all x �Ð������\ E1 

and the first estimate in (49) holds true. 
To prove the second estimate in (49) we consider three complementary cases, x �Ð����1, x 

�Ð������\ (E1 �ë����2), and x �Ð����2 �ê�����á���…�ˆ�ä���	�‹�‰�—�”�‡���t�ä�����Š�‡���‹�†�‡�•�–�‹�–�› 

W(g(x�������«��W(x) 

= �O(g(x))W�>(g(x)) + (1�O(g(x))) VP(g(x)) �O(x)W�>(x) (1 �O(x))VP(x) 
�« �« e �« �« (61) 

W g x W x
 �O(g(x)))[ VP(g(x)) 

�« VP(x)]  

(62) 

for all x �Ð������\ E2 

because VP is a Lyapunov function for the system (1) on B�A�Û �@������\E 2. This implies, 

because �O��is monotonically increasing, 

e �O(x) = �Oe(VP(x�������·���Oe1(VP(g(x))) = �O(g(x))2 for all x �Ð������\ E22(63) 

as well as 

x �Ð����1 �œ��g(x�����Ð���� and x �Ð������\ �����œ��g(x�����Ð������\ E . (64) 

Case 1: Assume x �Ð����1, then by (64) and the definition of �O��we have �O(x) = �O(g(x)) = 0 and 

by (61) and (52) we get 

W(g(x�������«��W(x) = VP(g(x�������«��VP(x�����¶���«�t�=�æx�æQ. (65) 

Case 2 Assume x �Ð������\ (E1 �ë����2). Then by (63) �O(g(x�������«���O(x�����¶���r���ƒ�•�†���„�›�����w�x�� 

0 so (62), (57), and (52) deliver 

W(x) 

e 



 

�¶���O(g(x)) [We�>(g(x)) �«�>We�>(x)]P�ª�� ���s�� �«���O(g(Px)))[ }VP(g(x)) �«QVP(x������ �¶��

max{We�>(g(x))2 �« We (x), V (g(x�������«��V (x�����¶���«�t�=�æx�æ��. 

Case 3 Assume that x �Ð�������ê�������—�•�–�‹�Ž���–�Š�‡���‡�•�†���‘�ˆ���–�Š�‹�•���’�ƒ�”�–���‘�ˆ���–�Š�‡���’�”�‘�‘�ˆ�ä�����‡�”�‡�á���™�‡���…�‘�•�•�‹�†�‡�”���–�Š�‡��

three cases g(x�����Ð����2�ê���á��g(x�����Ð����\ (E1�ë��2), and g(x�����Ð����1 separately. If g(x�����Ð����2 �ê�����á���–�Š�‡�•��

�O(x) = �O(g(x)) = 1 and 

(61) and (57) imply 

x�æQ. 

1 �¶���r���ƒ�•�†���„�›�����w�x�� 

)). We can use this to simplify (62) and then use (57) to estimate 

= �O(g(x)) [We�>�>(g(x�������«��We�>�>(x)]] �ª�����s���«���O(g(x))) [[VeP�>(g(x�������«��Wee�>�>(x)]] 

�¶���O(g(x)) [We (g�>(x�������«��We (x) + (1Q�« �O(g(x))) W (g(x�������«��W (x) 
If g(x���� �Ð�� ��e1 then �O(g(xe)) = 0 and �O(x) = 1 and (61) simplifies to�>��= 

W�>(g(x�������«��W (x�����¶���«�t�=�æx�æ��. 
W(g W (x). 

Now g(x�����Ð����1 implies 2 and since x �Ð����2 �ê�����á���™�‡���Š�ƒ�˜�‡ 
e�>��W(g(x�������«�� W(x) < r/ �t�� �«��

We�>(x�����¶���«2�=�æx�æQ W(x) = W (x). Thus, by (58) 
and we have proved that the second estimate in (49) holds true. 



 

e) By construction W(x) = VP(x�����±���æx�æP for all x �Ð����1 and E1 is an open neighbourhood 

of the origin. Thus, for small enough �A���¹��0 we have B�A���?����1 and (50) follows. 

Remark 20. The second order derivatives of W will in general diverge at the origin, but at 
a predictable rate as stated by (48). 
Remark 21. The next theorem, the main result of this paper, is valid for more general 

sequences (TK)K�ÐN0 of triangulations, where TK+1 is constructed from TK by scaling and 

tessellating its simplices, than for the sequence (TK)K�ÐN0 in Definition 3.1. However, it is 

quite difficult to get hold of the exact conditions that must be fulfilled in a simple way so 

we restrict the theorem to this specific sequence. 

Now we are ready for the main results of this paper. 

Theorem 4.2. Consider the system (1) and assume that the origin is an exponentially stable 

equilibrium of the system with basin of attraction A. Assume that D in Definition 3.1 is a 

subset of A. Then, for every large enough K �Ð��N0, the linear programming problem LK in 

Definition 3.1 possesses a feasible solution. Especially, the algorithm in the same definition 

succeeds in computing a CPA Lyapunov function for the system in a finite number of steps. 

Proof. We show that for all large enough K �Ð��N0 the linear programming problem LK has 

a feasible solution. Let us first consider the matrices and constants that are used to 

initialize the linear programming problem LK, K �Ð��N0. The matrices P and Q and then the 

constants , and Hmax, are all independent of K. So are the constants B�K��and G�K��

because D = DK = D0 for all K �Ð��N0. Indeed we set B�K��:= B and G�K��:= G in the algorithm for all 

K �Ð��N0, which implies that GF is also independent of K �Ð��N0 (since G is the same for all 

simplices). In contrast to this, the constants h�K, hI\F , h�ÀF,P and EF do depend on K �Ð��N0. 

For a particular K �Ð��N0 we have for these constants in the linear programming problem 

LK that for an S�K���Ð����K = TK,Fstd K, 

h�K���ã�±���•�ƒ�š���æx �« y�æ2 �±���¾n2�«2KF0 if S , (66) 
x,y�ÐS�K 

which implies 

, 
and 

 
2�«KF0 = FK �¶��h�K���¶���¾nFK �±���¾n2�«KF0 if S�K���?���	K. 

Similarly 



 

h�ÀF,P �ã�±���•�ƒ�š���æx �« y�æP : x �±�Ï0 and y �Ï= 0 vertices of S�K���?���	K} 

(67) 
and 

(68) 
in LK. 

Set Vxi = W(xi) for all vertices xi of all simplices S of the triangulation TK, where W is the 

function from Lemma 4.1 for the system. Further, set the variable C equal to nC�Û, where 

C�Û is the constant from Lemma 4.1. We show that the linear constraints (I)-(IV) in 

Definition 2.9 are fulfilled for LK, whenever K �Ð��N0 is large enough. 

For all K so large that IK �?�����A, the constraints (I) are fulfilled for LK by (50). For all K �Ð��

N0, the constraints (II) for LK are fulfilled by (49). By the Mean Value Theorem and (46) 

we have |(�ÏV�K) i�����¶��C�Û independent of i and �K��and therefore the constraints (III) are fulfilled 

for LK. We come to the constraints (IV). 

Let xi �±�Ï 0 be an arbitrary vertex of an arbitrary simplex S�K���Ð����K, S�K���?����K = O0. Then 

g(xi�����Ð��Sµ for some simplex Sµ = co(y0,y1,...,yn�����Ð����K and we have g . We 

have assigned Vx = W(x) for all vertices x of all simplices 

S of the triangulation TK. Hence, 

( ) 

j=0 j=0 �¶�«�t�=�æxi�æQ by (49) 

If Sµ �?������\ FK�• , then we can use Proposition 2.10, (48) with �Ë = FK and (66) to get the 

estimate 

(69) 

Thus, 



 

and the constrains (21) 
are fulfilled if 

. 

Because 

and holds true 

for all large enough K �Ð��N0�á���™�‡���‰�‡�–�¾ �¶ �æ �æ 

n2AF02�«3K + CG n2�«2KF0 �=��xi Q (70) 

and the constrains (21) are fulfilled for all large enough K �Ð��N0. 

If Sµ �?���	K and K is so large that FK �?�����A, then we have W(yj�����±���æyj�æP for j = 0,1,...,n and we 

can use the estimate (40) in the proof of Theorem 2.11 to get the estimate 

, (71) 

using (67). Thus, by (68) 

and h�K
,�æxi�æ2 �¶���¾nFK we have 

Since 

 we get, similarly to (70), that the constraints (22) 
are fulfilled if 

 
which again is clearly the case for all large enough K. 

5. Example 

As a proof of concept, we compute a CPA Lyapunov function by the methods described in 
this paper as an example. We consider the system 

(72) 
from [11]. That is, the system (1) with 



 

g  . 
With 

,  
we can assign 

and B�K��:= 2 · 2 = 4 

for all S�K���Ð�������‹�•���–�Š�‡���Ž�‹�•�‡�ƒ�”���’�”�‘�‰�”�ƒ�•�•�‹�•�‰���’�”�‘�„�Ž�‡�•���ˆ�”�‘�•�����‡�ˆ�‹�•�‹�–�‹�‘�•���t�ä�{�ä�����Š�‡���
�ƒ�…�‘�„�‹�ƒ�•���•�ƒ�–�”�‹�š��

of g at the origin is given by 

. 
�« 

We set Q := I, i.e. the identity matrix, which results in P := 4/ 3·I being the solution to the 

discrete Lyapunov equation (8). We take 

S  V�K���» 

as the objective function of our linear programming problem, and we minimize it. Thus, a 
feasible solution with a flat gradient will be selected in order to obtain equally distributed 
level sets of the Lyapunov function. 

We solve the linear programming problem from Definition 2.9, constructed for the 

system (72) with the triangulation TK,Fstd , where the parameters are K = 4, F := 0.033, NI 

:= 2, NO := 10, and ND := 12. For these parameters the linear programming problem has a 

feasible solution, which was computed using the Gnu Linear Programming Kit 

(http://www.gnu.org/software/glpk/) from Andrew Makh orin. The computed CPA 

Lyapunov function is depicted in Figure 4. As described in Definition 2.5, a simplicial fan 

�‹�•���—�•�‡�†���–�‘���–�”�‹�ƒ�•�‰�—�Ž�ƒ�–�‡���	���±�����«�r.033,0.033]2. This simplicial fan is depicted in Figure 5. The 

�†�‘�•�ƒ�‹�•���‘�ˆ���–�Š�‡���…�‘�•�’�—�–�‡�†�������������›�ƒ�’�—�•�‘�˜���ˆ�—�•�…�–�‹�‘�•���‹�•�������±�����«ND · F,ND · F]2 �±�����«�r.396,0.396]2. 

The largest connected component of a sublevel set compact in O = ���«NI ·F,NI ·F]2 = 

���«�r.33,0.33]2 is assured to be in the basin of attraction of the equilibrium at the origin, cf. 

Remark 3. This set is depicted in Figure 3. 

Let us compare these result with the quadratic Lyapunov 
function, obtained by solving the discrete Lyapunov equation. By 

equation 
���w�s���á���« 

0 
for all x such that 
where �%(x) = (g(x���� �«��Ax)/ �æx�æ2�â�� �•�‘�–�‡�� �–�Š�ƒ�–�� �æx�æ2 �±�� �æx�æQ. By using the general estimate 

�†�‡�”�‹�˜�‡�†���†�‹�”�‡�…�–�Ž�›���ƒ�„�‘�˜�‡���‹�•�‡�“�—�ƒ�Ž�‹�–�›�����v�ä�x�����‹�•�����s�y���á���™�‡���‰�‡�–���ˆ�‘�”���ƒ�Ž�Ž���æx�æ2 = r > 0 that 



 

is a Lyapunov 
function for the 
system in the set

 �¾�w/ �s�r�����³ 

0.224. 
In Figure 3 we compare these lower bounds on the basin of attraction with the lower 

bounds delivered by the CPA Lyapunov function from above. For further 
comparison we solved the linear programming problem from Definition 2.9 
for the same system with the parameters K = 5, F = 0.1, NI = 2, NO = 4, and ND = 

�x�ä�����‘�”�‡�‘�˜�‡�”�á���™�‡���‡�š�…�Ž�—�†�‡�����t�t�����™�‹�–�Š���	���±�����«�r.1,0.1]2 from the constraints (IV). Note, that in 
this case the sublevel set in Figure 3 is a forward invariant set with the property that 

for anythat �¥(t��k,in the sublevel set, there exists a sequence (�������Ð���	���±�����«�r.1,0.1]2 for all k �Ð��

N. Since Ftk= [)k�Ð�«N0.with1 ,0.1]tk2 is a subset of�\���ª�»�á���•�—�…�Š 

the basin of attraction, as shown by the quadratic Lyapunov function, we can also 
conclude that the sublevel set is a subset of the basin of attraction. 

 

Figure 3. The figure shows three subsets of the basin of attraction. The smallest one is obtained by 
the quadratic Lyapunov function, derived from the discrete Lyapunov equation, the middle one is 
obtained by the CPA Lyapunov function with the simplicial fan at the origin, and the largest one is 

obtained by the CPA Lyapunov function excluding the set �	���±�����«�r.1,0.1]2. 



 

 

Figure 4. The CPA Lyapunov function without the fan computed for the system (72). The CPA 
Lyapunov function computed with the fan looks very similar but is defined on a smaller domain. 

 

X 
Figure 5. The simplicial fan and its closest neighbourhood of the simplicial complex. 

6. Conclusion and Future Directions  

In this paper, we fully adapted the CPA method to compute Lyapunov functions to 
autonomous discrete systems. In Definition 2.9 we presented a linear programming 
problem, of which a feasible solution parameterizes a CPA Lyapunov function for the 
system in question. In Definition 3.1 we offered an algorithm that generates linear 
programming problems as in Definition 2.9 for ever more refined triangulations of a 
hypercube D containing the origin. In Theorem 4.2 we proved, that if the system at hand 
has an exponentially stable equilibrium at the origin and D is a subset of REFERENCES 



 

its region of attraction, then the algorithm succeeds in a finite number of steps in 
computing a CPA Lyapunov function for the system. Finally, in Section 5, we have applied 
the method to an example and have computed a CPA Lyapunov function. 

The CPA method for continuous systems has been extended to compute CPA Lyapunov 
functions for switched systems [19] and differential inclusions [2, 3]. It seems very 
promising for further research in this direction to combine the theory on the stability of 
difference inclusions and smooth Lyapunov functions given in [24��27] with the theory 
developed in this paper to design an algorithm to compute CPA Lyapunov functions for 
exponentially stable difference inclusions. 
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