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Given a nonautonomous discrete system with an equiliium at the origin and a hypercubeD
containing the origin, we state a linear programmingproblem, of which any feasible solution
parameterizes a continuous and piecewise affine (CPA)yapunov functionV : \ R for the
system. The linear programming problem depends on aidngulation of the hypercube. We prove
that if the equilibrium at the origin is exponentialy stable, the hypercube is a subset of its basirf 0
attraction, and the triangulation fulfills certain properties, then such a linear programming problem
possesses a feasible solution. We suggest an algfum that generates such linear programming
problems for a system, using more and more refined triggulations of the hypercube. In each step
the algorithm checks the feasibility of the lineaprogramming problem. This results in an algorithm
that is always able to compute a Lyapunov functiorof a discrete system with an exponentially
stable equilibrium. The domain of the Lyapunov functin is only limited by the size of the
FU—cZc¢,"c—sie Tlefce 7 fo—7f < edt Bt S £ Drright-hand-side, but is
otherwise arbitrary. Especially, it is not assumedd be of any specific algebraic type like linear,
piecewise affine, etc. Our approach is a non-triiadaption of the CPA method to compute Lyapunov
functions for continuous systems to discrete systems.

1. Introduction

Consider the discrete dynamical system with an equbrium at the origin:

xi1= g(xi) where g€ C*(R",R") andg(0) =0. (1)

Define the mappingg-™: R" \ Rnfor all m BNo by induction through g-0(x) := x and

g-(mD(x) = g(g-m(x)) for all x BDR". The origin is said to be arexponentially stable
equilibrium of the system (1) if there exist constantsAa (O and 0< p <1 such that

@M(x epfiMeese ~*” ¥&ZAsd allm BNo. The set A =X D

R limsupm\a» @-m(X @& * r <o .. fZZFIT <—o foece '~ f——"f ... —c'eA
The stability of the equilibrium can be characterizd by so-called Lyapunov functions,
i.e. continuous functionals on the stte-space decreasing along the system trajectories
and with a minimum at the equilibrium. Further, Lyapuna functions additionally deliver
a lower bound on the basin of attraction. For lineasystems, i.eg(x) = Ax for an A BRxn,
the origin is an exponentially stable equilibrium of the system, if and only if all
eigenvalues | of A fulfill | I] < 1. In this case a quadratic Lyapunov function caneb
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constructed for the system by standard methods thatresure A =Rnand the system is said
to be globally stable, cf. e.g. Lemma 5.7.19 in [38].

If g is nonlinear, then the classical approach is to caider the linearized systemxk+1 =
Axk, where A := Dg(0) is the Jacobian matrix ofg at the origin. If the origin is an
exponentially stable equilibrium of the linearized ystem the same holds true for the
nonlinear system. However, in this case a quadraticyapunov function for the linear
system is only a Lyapunov function for the nonlineasystem in some local neighbourhood
of the origin. Thus, in most cases, it gives a vecpnservative lower bound on the basin of
attraction for the nonlinear system. This is unfortunate, because the size of the basin of
attraction is often of great importance. For example engineering, the system (1) is often
a description of some machinery that has to be clos® the equilibrium to work as
co—tettta ‘. fZ o—f,<Zc¢—> " —StiF catcZ7 QLG FeerfReZffo ™Mc_Se_
cofZ7 fe'—%S "f ——" f—<c'ee fot LSl " PRt teeS> * =St of ..
is to be of any use. However, this property is clég not sufficient and the robustness of
the machinery, i.e. how large perturbations it can whstand, is of central importance. In
social sciences or economics, for example, where modelnd parameters are inheritably
subject to considerable uncertainty, the robustnessf an equilibrium is of even greater
importance.

In such cases and many more, a Lyapunov function ftte system, defined on a not
merely local neighbourhood of an equilibrium, but wih a domain that extends over a
reasonable subset of the basin of attraction, givasseful and concrete information on the
robustness of an equilibrium. Such Lyapunov functianare, however, much more difficult
to construct than the local ones. For some generaliscussion on the stability of
equilibrium points of discrete systems and Lyapunovunctions see e.g. chapter 5 in [38]
or chapter 5 in [1] and for a more advanced discussnh on Lyapunov functions for discrete
systems see [20]. For references to Lyapunov staltilitheory for differential inclusions,
a generalization to discrete systems, see the refarees given in Section 6, where we
discuss further research.

Numerical methods to compute Lyapunov functions for onlinear discrete systems
have, for example, been presented in [11, 12], whereollocation is used to solve
e—oef" <. fZZ> f teo. "t —F fefZ ' %ot te—qfZiet " LfcfkZ TUE —eco%o
basis functions [8, 40] and in [4, 23], where graphalgorithms are used to compute
complete Lyapunov functions [9, 35]. For nonlineasystems with a certain structure
there are many more approaches in the literature. Taname a few, in [34] the
parameterization of piecewise-affine Lyapunov functins for linear discrete systems with
saturating controls is discussed, [30] is concerneavith the computation of Lyapunov
functions for (possibly discontinuous) piecewise-diine systems, and in [10] linear matrix
inequalities are used to compute piecewise quadrati Lyapunov functions for discrete
piecewise-affine systems.

In this paper we adapt the continuous and piecewisaffine (CPA) method to compute
Lyapunov functions for continuous systems, first preented in [21, 22] and in a more
refined form delivering true Lyapunov functions in B2, 33], to discrete systems.
Originally the CPA method for continuous systems waenly guaranteed to compute



Lyapunov functions for systems with an exponentiallystable [17] or an asymptotically
stable [18] equilibrium, if an arbitrary small neighbourhood of the equilibrium was cut
out from the domain. In [13 16] this restriction could be removed by introducinga fan-
like triangulation near the equilibrium. A similar approach is used for the discrete CPA
method in this paper. The non-locality of discrete ystems, however, implies that a
fundamentally different methodology must be used. The€€CPA method for continuous
systems has been extended to nonautonomous switchegstems [19] and to autonomous
differential inclusions [2, 3]. The CPA method foridcrete systems can, at least with some
limitation, be extended to difference inclusions andwve discuss this in Section 6. The
details of this extension would, however, go beyonthe scope of this paper and are a
matter of ongoing research.

In this paper, we state in Definition 2.9 a lineaprogramming feasibility problem with
the property, that a solution to the problem parameteizes a Lyapunov function for the
system, cf. Theorem 2.11. The domain of the Lyapunfunction is only limited by the size
C 8t Fr—Zc¢,"c—oie fece N f—F"E < cLnfifZdiie ¢6-the approach
as in the classical approach. The exponential stdiby of an equilibrium of the system (1)
is equivalent to the existence of a certain Lyapumnofunction for the system as shown in
Lemma 4.1 and we use this in Theorem 4.2 to prove th#tte feasibility problem always
possesses a solution if the parameters of the probieare chosen in a certain way. Because
there are algorithms, e.g. the simplex algorithm, thiaalways find a feasible solution to a
linear programming problem if one exists, and becauswe can adequately scan the
parameter space algorithmically, cf. Definition 3.1this delivers an algorithm that is
always able to compute a Lyapunov function, of whicthe domain is only limited by the
basin of attraction, for a system of the form (1) pssessing an exponentially stable
equilibrium.

The structure of the paper is as follows: In Sectio2 we define the Lyapunov functions
and the triangulations we will be using and then westate our linear programming
problem in Definition 2.9. Then, in Theorem 2.11, wprove that a feasible solution to the
linear programming problem parameterizes a CPA Lyapunofunction for the system. In
Section 3 we deliver an algorithm in Definition 3.1that systematically generates linear
programming problems as in Definition 2.9. In Sectiorl we prove the existence of a
certain Lyapunov function for systems with an exponetially stable equilibrium in
Lemma 4.1 and then use it in Theorem 4.2 to prove théte algorithm from Definition 3.1
will deliver a feasible linear programming problem forany such system. Thus, we can
always compute a CPA Lyapunov function for a systemith an exponentially stable
equilibrium. In Section 5 we give an example of ourpgproach to compute CPA Lyapunov
functions and in Section 6 we give some concludimgmarks and ideas for future research.

Notations

For a vectorx BPR"we write X

n g\ /e
Xllp = 1 |%il?
Forx PRrandp - s ™¢ -I-:tHA(Hii (Z_ll |)

or (x)ifor its i-th component.

- >»
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maxwherei pp s @1,...,/1q {x1i|= 1. We will repeatedly use the H older inequalityand the
norm equivalence relations Xy X s

x| apnicPeceae” " a»p>q- s fXTBORN
@& Sitdaced matrix normy & & @ 2®ti et tApBwe denote bymaxes1
AX g Clearly

. . P P
AX pApX p. FOr a symmetric matrixP RnxAmin and max

the minimal and maximal eigenvalue ofA, respectively. Further, ifP is additionally
"fec—¢"F TIT<cec—14 <A4FE <—- ZIZ«%D.IIZ—°Z>f Z—f—"i%bif"""%é‘fZ‘ZO&iF"‘é_ ™1 F1"¢e:
Tef”"% t—<¢..x2=xTR. The estimateV Amin 1%[l2 < [Ix[lp < /Ao 112 for alx B

Rnfollows immediately from this definition.

A

Let (XoX1,..Xm) be an ordered fn @ s «——'Z1F *~ ~Rn. Fhé et of all convex

combinations of these vectors is denoted by c&X1,..Xm) :=

{ZT;D Aixi 0 S X < 1,350 A = 1}. The vectors Kox1,..Xm) are called

affinely independentf 2_:—1 Ai(Xi — X0) = Oimplies =0 for alli = 1,...,m

If (XoX1,..Xm) are affinely independent, then the set co,X1,..Xm) is called anm-simplex
and the vectorsxox1,..Xmare said to be its vertices.

An inequality such asx {y, where x andy are vectors, is always to be understood
componentwise, i.exi yifor all i.

The set ofm-times continuously differentiable functions from anopen set O to a
set P is denoted byC"(O,P). We denote the closure of a set D by D, its inta by

D., and its boundary by D := D\ D, Finally, Bace t1 <ot feo —Sh-batwite e

center 0 and radius Ai.e. Bx={x BR" axae, A

Remark 1lt is unusual to define a simplex as the convex conmation of the vectors of an
ordered tuple, because the resulting set is obviolisindependent of the particular order
of the vectors. For our purposes their order is, hoever, important and this definition has
several advantages, cf. Definition 2.7 and Remark 9.

2.The linear programming problem

In this paper we are interested in exponentially sable equilibria, i.e. the moduli of the
eigenvalues of the Jacobian @f from (1) at the equilibrium at the origin are all srictly
less than one. We will show that if the origin ismexponentially stable equilibrium of (1),



then a CPA Lyapunov function can be computed algtimmically by using linear
programming. Because we are only interested in expong&ally stable equilibria at the
origin we only need to consider a specific type dfyapunov function that characterizes
this kind of stability. Further, it is advantageousto define the set N of those
neighborhoods of the origin that we will repeatedlyuse in this paper. This is done in the
next two definitions.

Definition 2.1 .Denote by N the set of all subsets ?Rnthat fulfill:

i) Discompact.
i) The interior D« of D is a connected open neighborhood of the origin

ii) D=D-.

A Lyapunov function for a system is a continuous fumtion V & R, with a local
minimum at the equilibrium at the origin, which is deceasing along system trajectories,
i.e.V(g(x)) < V(x) for all x +0. Because the dynamics of a discrete system are noceh
i.e.g(x) is not necessarily closetox& =St ""*'t"—> 0tf..."Ffece% [Z'o% s>e—Fe
needs some additional consideration compared to theontinuous case.

One must either assume, that D is forward invariantrp more practically, restrict the
demandV (g(x)) < V(x) to all x in a subset O of D, suchthat B <+’ Zgks B & £
follow the second approachDefinition 2.2 .LetDOD a @ & feet ae ,& f",<-"f">

norms on R".
o
A continuous functionV & R is called a Lyapunov function for the system (1) iit
fulfills:
) gx B "*xPZzZa
i) V(0) =0 and there exist constant®,b >0 such thataseae f[x %PHeeae HdI'x B a

i) There exists a constant >0 such thatV(g(x ¥ (x Yceese "‘'"xfE¥ Z&
0

Remark 2.Because all norms onR" are equivalent and the constantsa,b,c >0 are

f!!,,(_”f")é _Si lf”_(..._zf” .l”.‘_&l" H%fz-k_¢_(~£ x‘” . 5.2) [SEad
U

guantitative importance.

Remark 3The origin is an exponentially stable equilibrium othe system (1), if and only

if it possesses a Lyapunov function in the sense &fefinition 2.2. In this case every



connected component of a sublevel s&t 4([0,r]), r >0, that is compact in G, is a subset
‘Y Sttt —«<Z<¢,"c—seie fece ‘2 Pbedifch.thatoeiae 1feee "X fORE

The sufficiency follows

0
directly from the estimateV(g(x 1 s «.)V,(X), whichimpliesV(xk § s=«.)ky

(xo), and the necessity follows by Lemma 4.1 below. Tipeoposition about the sublevel
sets follows, for example, by Theorem 2.2 in [11].

The idea of how to compute a CPA Lyapunov functioorfthe system (1) given a
S>'i”...—,f DB & <o - «— tT =8k K=22..,jl of h-simplices Sk such
that any two simplices in T intersect in a common facor are disjoint, cf. Definition 2.3.
Then we construct a linear programming problem in Defiition 2.9, of which every
feasible solution parameterizes a CPA functiow, i.e. a continuous function that is affine
on each simplex in T , cf. Definition 2.4. Then wé@wv in Theorem 2.11 thatV is a
Lyapunov function for the system in the sense of

Definition 2.2.
Because we cannot use a linear programming problem tiheck the conditionsa seae |
V(x Peese fYlx ¥(x Tceeae " ' "f —Sf— "cox—fZ> ofe>
U

the essence of the linear programming problem is howotensure that this holds for all
x b fetXAYZ ? & "fTe'f..—<"FZ>4 ,> ‘oZ> —olo% foxTaoc—F e—e 1

We start by defining general triangulations and CPAunctions, then we define the
triangulations we use in this paper and derive theibasic properties.

Definition 2.3 (Triangulation.) Let T be a collection of-simplicesSkn R". T

eitheris called a triangulation of the seBkéS, + T ‘Sxand SDyintersect in a common
face. The latter means,:=8s« S«if for every SkSu B K&,

with
S = co(xtx{, ..., x  yand S¢ = ©0 (X, X1, X))
that there are permutations =and >of the numbers Q1,2,...,nsuch that z
P = Xy = xf:;(;:)' fori=0,1,...,k 4 ™EER<n
and

SkéSy=c0(z20,21,..2).

Note that according to Definition 2.3, two simplice Skand Sy with different indices K
+/ are different, so every simplex is only counted once



Definition 2.4 (CPA functon t- .1 f —"<f*% —Zf—- R~ THenfwetan ?
define a continuous, piecewise affine functio® & R by fixing its values at the vertices

of the simplices of the triangulation T . More exalyt, assume that for every vertex of
every simplexSkD ™1 "1 %o<“te f — e Pudinphrfidilar-ifx,igd vertex

of Skb  fytsavertexofSy B  fxty, thenPx=PF. Then we can uniquely define
afunctionP- \ Rthrough:

i) P(x) := Pxfor every vertex x of every simplexSk b aPds

affine on every simplexSkb  a

The set of such conte —‘—ea '<f...Ff™cet f""ceR fukiling & anck ii) is

denoted by CPA[T ].

Remark 4.If P B ~Ste "SEPT"H>-St"t <o [ —eawBRAM.a-""
unique number bk DR, such that P(x) = aTkx + bkfor all x B Sk Further, if x

= 6;/ = CO (Xr'/-_xr}-, s 3 i .Xy) & T ) )
0 1 n
n , then x can be written uniquely as a convex

=) AL 0< )<
combination x  i=0 1foralli=01,...,n andzza':o Ai = 1, of the

vertices of Skand
P(x) =P (Z Aﬂxf;) =Y NP() =) AP
i—0 i—0 =0 .

Remark 5For the construction of our triangulations we uselie setS, of all permutations
of the numbers 12,...,n and the standard orthonormal basi®1,e2,...en

one ifof R". For a set B fet t“—fZ —* @1/, we definesthe characteristic
T—e—<'eD A4 —"-S374a MRVHRINESEZRR N —c .o

defined by

n

RiX) := A « syi)xiei.

i=1

Rix) puts a minus in front of the coordinatex; of x wheneveri B &



Remark 6 The two parametersb and K of the triangulation Tk, 5, cf. Definition 2.5, refer
- -8t ecoet "~ —S 1 bIPchleredhytits simplicial fan at the origin and totie
fineness of the triangulation, respectively. For sematic pictures of some of these
triangulations in 2D see Figure 1. For similar picttes in 3D see Figure 1 in

[15].

Definition 2.5 (Standard triangulations) We are interested in three general
triangulations T std, Tkstd, and K, of RN,

(1) The triangulation T stdconsists of the simplices

S,J0 =0 (xﬁj",xﬁja. _— ,xﬁja)
| t
\\ /
W 2.
| —Z ~—
i
I
o std std
(a) T* = T3 () Tastan. (c) Tastap.

Figure 1. Schematic pictures in 2D of some of thadangulations used in this paper.

for all z€ NG, all 7 € {1,2,....n} and all PBS,, where

f =R (z+Zeo(j)> foriz().l,?,....,n.jg J

X =1 2
(2) Choose & DNo and define the hypercubdix = [=2",2"]" For every simplex
Gug0 = co (x§77,x377,..., xi77) € T such thaxt” ™ € Hi
and X/ llo = 2 for i = 1,2,....n consider then-simplex So 2P:=

(0, 25 LE 2T ,xﬁjr’)
co Ts, Tkstdis a triangulation of. The set of all such simplicé#s, cf. Lemma 2.6.

SozJPis denoted byk

(3) Now choose a constanb >0 and scale the simplices in the triangulation &t of
the hypercube Hand the simplices in the triangulation Tstd outside of the open
hypercube HE with the mappingx y\ @, where Q= 2&b. We denote by K

the resulting set ofn-simplices, i.e.



T = pTE U p {G¢€ T . G| =28 28 P 0}

Remark 7.The triangulations T s, Tkstd, and K54 are the same as in [16], but B is

defined in a more constructive way. This more constrttive definition is advantageous
for the implementation of the linear programming problan in Definition 2.9. However,
we need to prove that kstdis actually a triangulation of H. For future use we prove a
slightly more general result. The vectorsK™ and Kr in the following lemma are

(_2[\' _2[\' _2[()'1'"

o K oK oK\T ,

2.8. and (2 :2",..-,27) respectively for kkfrom Definition

Note that the condition (3) in the following lemma & equivalent to assuming that
exactly one vertex of the simplex is in Kand all others are in &, see Remark 8.

Lemma 2.6 Letk™, K” € Z" pe vectors of negative and positive integers respectively, i.e.
Km< 0 <Kp, and definek :=  BR": Km qx {Kr}.

= €O (U,xfja,xgj", o ,xf,j”)

Let T denote the set of n-simplicgg , Obtained by taking

i — zJo [ zJo J
a simplexS,7s -= ¢0 (Xu X[ X U) € Tsucf, (2), such that
ng” e K° and{xf‘%, xgj”, vl e K (3)

and replacing the vertext" ° ¥ 0.
ThenT is a triangulation ofK in the sense of Definition 2.3.

zJo _ C fe s , .
Proof.We start the proof by noting that i~ Jo(1) = (K)o foralli =1,....n¢ p g jp
Jand €A ry = KMgyforalli=1..,nf Ps B & etfttad —Sce e—f—_foete_ "77*]
from (2).

Now, we show that the intersection of two differentsimplices in T is the convex

combination of their common vertices. For thisle6,S B .+ f",<="f">a

Then there arezz™ € Ny, J.J" C {L,2,....,n} and P &PS such that

* * *
ZJJTXZJJ X?zi J*e )

g = co (01}{1 27 e, X%jg) andS = €0 (
Since Tsdis a triangulation, we have

Z*J*U* Z*J*U*
0,x] Xy

S éS é K=SuréSamé K = coi,22,..2),
where z1,22,..zxare the common vertices ofS,pand S;gorin A & ~ k <Tn then we have
St €S =c0(0,21,22,..2¢). Indeed, it is clear thatS; éS; @ .0,21,22,..2¢). On the other
hand, letx BS; €S\ {0}. AsOXx B fet <o .. '¢7"138K-S 19+ (o8fi= KfD

K.

We will now show thatx YBS; éS,. Sincex PS;, we have



T
_ ~ZJo
= E /\,Lx?.
=1

w.ch? oAi =1, A 2p and o+ rl . Then

T

VX = E I/)\,jXZJU

=1

We show that 2oi=1 VA <1 Indeed assuming® s P fot —ecoe% —St e—f—Fefe.

beginning of the proof, Z L AXETT) o0y = iy vAi(KP) () < (K")o01), sincelk B &
A similar argument holdsforP s B  $e T

Now, sincexYDS; éS, é A, we have
K

Xo= K= /EpiZi

i=1

k
with Z-@:1 H= 1 and thus

w|"’“

k k
Hi
Xl (-2
-t\; bg R ~ ~
where 1~ Zi:l & Z0sinceK- s4 Sceo «S WP - B,41522,...2v).

Case k=n

Now we consider the casd& =n. We will show thatz=z¢J = g and P= Fji.e. that we do

not obtain the same simplex twice.

By (3), we havex3j0~ Xg*j*g* ¢ 0K and ijoﬁ"?*fg‘ €K foralli=12,...n
Now considerx?j(I =R7 (z+e,1)) € 9K . hence, there is anUp A...,H such that

(i) (x fj”),p = (KP)p- and n* € J of (ii) (XTJJ)H* = (K™),» and n* € J

We on‘%/ consider case (i); case (ii) can be dealtitlv similarly. Since xo 7 ¢ 0K we

have (xo Jne < (KP)ne in particular F1) = n0 By assumption there is an®D &....»
such that

V=X 7T = RY (Z* ' Zea*u))
X j=1 (4)

L i " J*a* 27
This implies n 01 By since &i+~ ~ )t = (X177 )as > 0.

There are three cases, either (if1) = Pgl), (i) P s BP§2) a®B) a a& §joP(ii) K1)
b Rgi o+ 1) a® o+ 2) 4 a@rgla\We need to exclude cases (ignd



(iii).

In case (iii), the 1) = n 6th component of

is equal to KP)not+ 1, i.e. the point is not in&K  a contradiction.

In case (ii), let R1) = Pgjo ™ <« — §0fji § then the R1) = n 6th component of

*‘-7*!7* j* *
f*fl = R (Z + Z eo.*(j))
X

— 1. The point is in
. z'J"o" B . o o _
is equal to KP)no (X * ) 'K (asitis na X ), hence, there is an
m O + lnoivithsuch that (i)m YD © Let us restrict ourselves to the first case, theecond is
Z*L‘T*U*) o
m*

dealtj @ me= (K )mawith m 0T Bor (ii) (x5

it=1

g=1

(K with similarly. Then, asi V- j ¢ we have
o — -
(Xf* )m* 2 (X.f**l )m* B (K )7]?*(5)
. ; J o
Also, sincen0+1 mand xp" 7 €K ., we have
zJo _ zJo P
(Xl )m* o (XU )m* < (K )m*

which is in contradiction to (4) and (5).
This leaves case (i), i.ef1) = R{l),

Ri(z +eRry) =Ri(z 0+ e - r@)),

Ri(z) =Ri1(z 9, and, in particular,z =z tsincez 0 and z 0. Further, these results imply that
i . . XZJU _ X?*j*g*
foreveryi B 3,...pthereisaniUb 3,...1 such that™ i and that these

equations are equivalent to

> RI(es) = Y R (ery)
j=2 J=2 fori=23,...,n

Clearly, this is only possible if J =tdnd P= R0

Express a boundary point as a convex combination
Second, we show that for everx B A there is az € Ng. J € {L.2,....n} and PPS,

such that X 3‘7” c K°, x?‘j” € K for i = 1,2,...,n, and x &,

zJo _z o zJo
(Xo X e Xy ) We do this by explicitly deriving appropriatez,J, and Pfor x.



Definey = (|xa|,|x2|,.. }xn]) Tand let J be such thakyx) =y, and then alsRyy) =x. Since
x DA, there isannUD &...,4 such that (i) Xa= (KP)nowith nOTD  * "Xn&<«(KM)nawith
nS a

Definez= (2122, ,22)" € N py

=0,ifyi=0,yi «s fi<y,ifyi>
{o.

foralli B ,A...,H In particular zns:=yno«1l andKm< RXz) <KPp, i.,e.Rz D -, by the
construction of z and becauseKm<0 <Kp. Finally, setw :=y «z& Stewif s ~“"iFZZ
12,...,nLet PBSsuch that K1) = nand
1=wRr1) -WR2) -...WRn) - [
We definext” = Rj(z). To show thatx € co (xP77.x377, x0T we define
k=wWrk «Wrk+1) - I “K'=1....n«land Ih=wRrn) -
We havei—1 A = Wo(1) = 1 andk =i A ?.Indeed, we show that the

(et ) B
k-th component 012’*1 2+ 2 5=1%()) 18 Yk which shows the statement by
applying Rion both sides.

(Z A (Z + Z eg(‘j)) ) = (Z Ai Z eau))
=1 §=1 " =1 j=1 i

= Uk
n
where we have used Z-;:l Ai = 1. This shows the statement.

Express any point as convex combination
Third, we show that for everyx B —St”1 <o fS-D- 'deh ghatx BS. Ifx =0 this is

obvious. Ifx +Gthereisa @ s »— ... ®HDKf Above we showed that this implies that

®-can be written as a convex combination,

'T’XZE:/\-;X?J“ (1—~~ 0+Z zja
i=1

, from which x



follows.
Remark 8In Lemma 2.6 we considered simplices in (3) with oneertex in K-and all other

vertices in A, and we specifically assumed that the vertex insid

K is {77 This assumption is no loss of generality, since i& simplex S :=

§ zJo _zJo zJ o . . LN
co (X{) R SHAREEERE ) € Tshas one vertex in kand all other vertices in A, then

_— : L zJ . .
the vertex inside K is necessanl;xﬁ ’. To see this observe the following:

297 = RY (24 X e € 0K
Letx* g ZFI ®()) ¢ be the vertex ofS not lying on the

, , L gado_ 2Jo I (e :
boundary. We want to show that = 0. Ifi + ri & g xR (eoti)) € K so

. J : *
there is annUD %....H such that (i) (P97, = (KP)ue with " iy o

zJo . m 2 oy . i .
("%‘—1 )n* = (K™)ns with n* € J | ot us consider the first case, the second case i

. .. . Jo 4 ¢ J
dealt with similarly. Sincex; & (”C, we have (sz g)n* < (KP)n-

(KP)pr = (x77) . =1 < (KP)pe =1 if o) = n*

,i.e.
(A

or (KP)no= (Xzidn< (KP)no  if BRI =1 no

In both cases we obtain a contradiction.

Definition 2.7 . For ann-simplex S = co(Xo,X1,..Xn) we define itsshape matrix Xs BR™"
through

Xs:= (X1 «X0,X2 «X0,..Xn «X0)T
Thus, the matrixXsis defined by writing the entities of the vectorxi «xoin the i-th row of
Xsfori=12,...,n
For a triangulation T given as a collection of simmes with ordered vertices we refer to

the set {Xs: S b tfie shape matrices of the triangulation T .

Remark 9.Definition 2.7 is the reason why we defined a simple as the convex
combination of the vectors in an ordered tuple. Theesulting simplex is not dependent
on the particular order of the vectors, however, th shape matrix is.

Remark 10.Notice, that becauseS is an n-simplex, the vectors koxx1,..Xn) are affinely
independent, i.e. the shape matriXsis nonsingular.

Lemma 2.8 The set of the shape matricesofdis finite. For any fixed KkbNo and b >0

the set of the shape matrices ok, 5tis finite.



Proof.Notice that Szapand Szacrchave the same shape matrix if J <and P= PU As there
are2n T« " f"te— o— <2 _ehanen!slifferent permutations Pof {1,2,...,f there can
be no more than 2n! different shape matrices for

T std.

The second statement of the lemma now follows immedialy because the simplicial
fan at the origin in Tk bstdis finite.

Now we can formulate our linear programming feasibilly problem for the system (1).
It is followed by several explanatory and clarifyirg remarks.
Definition 2.9 (The linear programming problem.) Consider the system (1). Let
F >0 be a real number and 2{Ni < No< Nobe natural numbers. Define
[ :=Ni-F, O:=No-F, andD:=Nb-F

and the hypercubes
D:=[-D,D]", O0:=[-0,0", ZT:=[-I1]" fetT &RHA«

t— —S3 e—e¢ N« NoqNobe chosen such thak B <o’ Zgkes D KB

implies  g(x) Inex lg(x)lo<I D & <atfa
<F

Ix]| e <
ande f S g e 1D. (6)
e P »
Zif”z) @ @ @ f‘T ___‘0—fﬁ<900¢§:|‘_‘(2(_%<. fe

Let K BNo and consider the triangulation Tk,Btd of R"from Definition 2.5. Define

T={SDkrtdD:Sé& & %I 1} D T ()

lation ofThen, by the definitions ofD in the sensef Definition 2.3. Before we present the
linear programming Tk stdand , Clearlysp S=and is a triangu-

problem we need a few specifications and definitions
With A:=Dg(0) as the Jacobi matrix of at the origin andQ BR"x"an

arbitrary positive definite matrix, we solve the dicrete time Lyapunov equation



ATPA=P «Q (8)

for a positive definite P BRxn, cf. Remark 12. We define )
Vp(x) == |Ix][p,
_1 /0 (10)
a=g A s

l (11) H[nax - A[Pil'(’l){ 1+ Al]{;‘d){
V ’)\fi;ill A

min

foreverySkb  tf ¢t

hkad+ < X8 «gee (12)
X,y BBk
and B, and G, letbe constants fulfilling
| 9%a,,
Bozm [
GV Z £ » Fiik ‘()'i(z)’ zeG, rhadeg |f SK
ij=12..n | Qg ?
See Remark 11 for an interpretation of the constant8xand Gk and
We further define
h:=maxfk Sk? \F.}, (15)
\F
hxEpa+ «f% «paex3F0andy ¥0 vertices of anSk? (16)
G:= max{Gk Sk? ,andF a7)
(13)
if Sk? & (14)
€6, ‘ J |
EF = G m Ei)({ Hmax

., .I%f}; AX s h U li?,, " (i;f,, y h A ]l-f)d]?‘ By (i;:_;? ) .EE:_;:
- TF (hne)2/F, 2h i

(18)

Note that all the constants are strictly positive.
We are now ready to state the linear programming prolem. The variables of the linear

programming problem are Cand Vx for all vertices x of all of the simplicesS:,S,..Snvin T
. The variableCis an upper bound on the gradient of the functio’v & R and for every
vertex x; the variableVxis its value atx, i.e.V (x) =V, cf. Definition 2.4.

The constraints of the linear programming problem are:

() ForeverySk=cooXi,..xn D Sk & ™if «f-

Vxi=Vp(xi) for i = 01,...,n,

where Vpis the local Lyapunov function from (9).
(I For everySk= coXoX1,..Xn D ™1 fiefef

Vxi - VR(xi) fori=01,...,n (29)



(1) For every Sk= co(xoxx1,..Xn) we define the vectors

T
W K= (Vxa «Vxo,Vka «Vxo,...,¥n «on)TandVV” " XG.,WV,

where Xsids the shape matrix ofSk cf. Definition 2.7, and we demand

Ve IC. (20)

These constraints are linear in the variables of #linear programming problem,
cf. Remark 13.

(IV) For everySk=co(xoX1,..xn B Sk a fet Hi={02,... nthereis a simplex
S. D .ydyi,.yn B «— .. .dbxi— $F.~This means that we can writeg(xi)
uniquely as a convex combinatiorg(xi) = 2_-0MiY5 of the vertices ofS,, cf.
Remark 14.

If Sk? \F.we demand

T

Z wiVy, — Vo, + CGhy, < —a||xillg fori=0,1,...,n

j=0 : (21)

fSk? ™% thefet

> " wiVy, = Va + CBuhyxill2 + Ex < —alixillg
3=0 fori=1,...,n (22)

Note, that we do not demand (22) for = 0, cf. Remark 14.

We have several remarks before we prove in Theorem2 that a feasible solution to
the linear programming problem in Definition 2.9 paraneterizes a CPA Lyapunov
function for the system in question. For some of theemarks and for later we need the
following results, proved, e.g., in Proposition 4.and Lemma 4.2 in [3].

Proposition 2.10Letco(XoX1,..Xk ?R"be a k-simplex, defin& := co(xoX1,..%k), h:=
k n
maxij=01,..k 3@ «Xj & and consider a convex combinatigni—o Aixi € &. Let R™ 9

be an open set withS ?

a) Ifg & Ris Lipschitz-continuous with constant L ad, i.e|Jg(x ¢y 1

L ee «y &for all x,y B , then



< Lh.

i k
Z Aig(x;) g (Z Afxi) o
=0 !

b)If g P GUR) and By = max||H(z)|l2,

where Hz) is the Hessian z¢ of g &,
S

then

K k
: (z A) -3 gt
i= 1=0

k
> " AiBullxi — o2 (magg Iz — %ol|2 + ||x; — xU||2)
T zeS

<

b | —

A.
< hBy Z /\i“X‘i - XUH?

i=0

< BHh.Q.

Further useful bounds are obtained by noting that

™. 01,01,
9 ZEb, | |
9
By <mn- max ’ : (z)‘
Remark 11For everySi= cofox1,..Xn D Si® & ™1 Sf~F ,> 7"‘"lec—<'e tASr ™c(—.

T
constantsBkin (13) for every convex combinationx = D i AiXi;

n

T 1
=D, A-:-g(x-:-) < 580 ) Millxi = xollz (b + [1xi = xoll2) < Byhy
1=0 i=0
Now letSkD & ‘7 fe <e—1"""1—f—<'s ‘"GuIs(l4), Notice that—for anyx,y

PRnthere is ani B ,A...,f and a vectorzxy on the line segment betweerxk and y such
that

Bx @y &=|gi(x @)l =1Tgi(zy) x «y Nigézy aee «y .

Hence, we _ have forSkb
lg(x) — g(¥)lleo ﬁ(z)‘ <q,

sup <n- max
8:7=1,2y:s,M

(23) ** " aes,

Now letSkD & « 'f”—«...g(H)F'& wea havetfor everyx BSk? =0, that
llg(x)lleo

E

sv X =¥l
£y

<G =GF and  @x =IGF. (24)

»



Remark 12.The equation (8) is called the discrete Lyapunov egtion. For its properties
cf. e.g. Lemma 5.7.19 in [38]. It can be solved numally in an efficient way [6]. See also
[29] and [5].

Remark 13.Consider a simplexS = €0(Xg. X{.-** ., X)) in the triangulation T . The
components of the vector [Vkare linear in the variableds Vxt:-- > Vxi and by
introducing the auxiliary variables C1:C5: - Cl «— <o tfecZ>  F\tver $Schn bee
implemented by the constraints

CK+ GK+ ...+ GKYCand — Cy < (VV,)i <CY fori=1,2,...,n\where

4%
(TVQi is the i-th component of k There are several different reasonable
™ fse —t "t f St Zcof fVkaGlor KE 492-.0,Ne
One is to sty = C/nfori=1.2.....nandv =1,2,.... N | this case, there are no

auxiliary variables needed and we will do this inlie proof of Theorem 4.2, where we show
that we can always compute a CPA Lyapunov functiginthe equilibrium at the origin is
exponentially stable.

The other extreme is to include all the auxiliary vaables GKi=12,...,mand kK= 12,...,N
in the linear programming problem. Here, one might sweed in computing a CPA
Lyapunov function with larger simplices than when ugg fewer or no auxiliary variables.

In between these two extremes one could e.g. negldabie Kdependence of the auxiliary

variablesCi and merely introduce the auxiliary variatkes G,C,...,€
and implement the constraints ||[VV,|1 <C by C1 +Ca + ... + C,, <(Cand —C; <

(VV C v w85 5V di
fifori=12,...,m-and =12

Remark 14.Consider the constraints (IV) in Definition 2.9. @arly g(xi) can be in more
than one simplex of T . However, the representatl(g,v —0H3Vy5in (21) and

(22) does not depend on the particular simplexS, = cofyoyi,..yn) such that
8(x:) = 2 im0 1Y because T is a triangulation. Further, (22) canndie fulfilled for

i =0 becauseE >0.F

We now prove that a feasible solution to the lineaprogramming problem in Definition
2.9 parameterizes a CPA Lyapunov function for the sgm in question.

Theorem 2.11If the linear programming problem from Definition 2.%48 a feasible solution,
i.e. the variables C andxWave values such that all the constraints are fulfillethen the

function V a R, parameterized using the valuesx\nd the triangulation T as in



Definition 2.4, is a Lyapunov function in the sense of D&fin 2.2 for the system (1) used

to construct the linear programming problem.

Proof.Foreveryx ® —S1"% xexfoxa' D +— x5 25HA%i
St ..feTt8c—> 7 —S@imﬂédia&elydaﬁvers

=V (i )\ix[') Z AiVx, = Z Aillxillp =
i=0

= |Ix[|p

ZAxg

and the definition of V as a piecewise affine function such tha¥ (0) = O renders the
existence of a constanb >0 such thatV(x feeaforallx B, "< —e& St tHefetce%o
part of the proof is to show thatV(g(x ¥ (x 9 =eeaforallx B a

To do this we first show the auxiliary result that|]V(z & (y Qe «yee

»

forallyzb & FTesly+u(z «y)forallp B ,X]. Since D is convex, the line segment
{ru:n B 1]} is contained in D and clearly there are numbers

0 =po< < o< ... < =1 and K &k &Sdch khatr, BSkfor all

M B pia,u]i=212,..,KNowri=zandro=y and for everyi = 1,2,...,K

we havev(x) = VW, - (x —xg') + Vi % torx€ O =00 (x;; X e x’,j) Thus, by
(20),

< Z IVViullalls = riilloo < Zcm — i)z = ¥lloo
=1 i=1

= (e = 10)Cllz = ¥lloo = Cllz = ¥lloo: (25)
A direct consequence is that i,z BPSk? a -8¥)»9(z D f+1 ,> tu

IV(g(z ¥(gly Ga(z ¢y @ ICGee «y & CGhk (26)

We now show thatV(g(x & (x 9§ =eeaforallx B a itst’show thisforallx b

\F.andthenforallx B a

Case 1l:Letx D \F.be arbitrary. Then there is anSk= coXoX1,..xn ? \ F «such that

x BSk which in turn implies that x can be written as a convex combination of the veres

of the simplex,x = > i—o \iXi, But then by (26) and the constraints (21) we have



V(g(x)) - V(x) = V(g(x)) ZA V(g(xi)) +ZAV(g(x, Z, V(i)
= Xi[V(gx) - V(gx)) + V(gx)) — V(xi)]
i=0

<3 MG by + V(g(xi)) — V()]

i=0

n
< —(},Z)\;:HXiHQ < —alx||g-
i=0 (27)

Case 2:We now come to the more involved case ® & x1#B- .t f",<="f">4 Ste+ —St’
is a simplexSk= coxox1,..xn ?  *—...X5 DPSRfidx can be written as a convex sum

of its vertices,x — D im0 AiXi, However, nowxo = 0, which also impliesg(xo) =0 and V
(9(xo0)) = 0. Therefore

(28)
Z Nig(xi) = Z Aig(xi) and (29)
j— =1
Z AiV(g(x;)) = Z /\iV(g(Xs))
i=0 =1 (30)
Vi(g(x)) - V(x) = -V (Z i8(xi ) +V (Z /\ig(xf)) - Z)\@V(g(xi))
=1 i=1 =1
iy 5)
+ Z AiVi(g(x;)) — Z AV (xi), (31)
i1 i=1

g
We extendV (g(x ¥ (x) to three differences a), b), and c), namely



and then we find upper bounds for a), b), and c) parately. a) By

(29), (26), "
and V(gx)) -V (Z /\fg(xf)) <Cllgx) - > higlx)
i=1 i=1 55
=C |[g(x) — Z Aig(Xi)
i=0 5

(f
ol Z AiByhy||x; — xo|2
i=0
mn
= CByhy Y Nillxilla-
=1

Proposition 2.10 we get

(32) b) Setzi:=g(xi) fori=01,...,mand z . We show that

: (33)
Anormis aconvex function,stpa ..."& { & <o ..."¢"Ft88 e<e%o t{ Hfeectfetllr ™1 ¢
inequality that

Fori=12,...,nve havez

Thus we can writezi as a convex combination of the vertices & ,and
by the definition of V ‘e L lee " fce— fet Foeefoioxot —fZc—> ™t %t

(35)

Together, (34) and (35) imply



i.e. the first inequality in (33) holds true.
To prove the second inequality in (33) we first sha two auxiliary inequalities, (38) and

(40). If z B \ F, then we can use Proposition 2.10 to gain uppdyounds onV (z  &/r(2).

The Hessian matrix ofVpat z is given by

: (36)
from which, with Hmaxfrom (11),

: (37)
follows. There is anSu= cofyo,y1,..yn ? \ F.such thatz BS,and we can writez as a

convex combination of the vertices o6 .Hence, by
Proposition 2.10,z B \ F implies

(38)
lfzD & —Ste —SS=fcofoyfie.yn ? o — ... BBSSHefineui:=yi «yifori=

1,2,...,nWe can writez as a convex combination of the vertices &, and sinceyo =0 this

now implies

z . (39)
Now

Hencez B  «<e'Z«cte

(40)



We now prove the second inequality in (33), considéng two complementary cases:

, then by (38),
(40), 1, and the definition ofE we have

F
(41)
If , it follows from
(42)
> tv —SfpeYFskez D a4 S—ea ™ fzasfrefoimiuta-(89). Note»
that the verticesyi,y2,..ynin that formula are not only in the boundf "> *~  E,f"«a

paraxial hypercube, but are also all points at theame side, i.e. there is anUD Z....H
such that {/i)no= Ffor all i = 1,2,...,ror (yi)nox Kfor all i = 1,2,...,n(cf. similar argument at

the beginning of the proof of Lemma 2.6). Therefore,

which together with (42) implies
Hence, by (40) and the definition oE we getF

This inequality and (41) prove the second inequalit in (33).c) The
constraints (22) imply

(43)

We now finish the proof by applying the results fron a), b), and c), i.e. (32), (33), and
(43), to (31) and obtain



(44)

Remark 15.0ne might be tempted to assume that the CPA approximaii of a convex
function is also convex. As this would imply that tb term b) in (31) was negative, the
factor Ein the constraints (22) would not be necessary and theroof F

of Theorem 2.11 would be much shorter. However, in geral this is not true as shown by
the following counterexample:
Consider the convex functiorP(x,y y \(x y)(0 1)(y)

30 X

and triangles with the
vertices

(0,2), «4),1,1) and
(0,0), «4),(1,1). For
the

CPA approximationP2) = 4,

P (0,0) = 0 butRemark 1. It remains an interesting question
if the convexity of the CPA approxe eP(0,2) + 0.and the triangulation in a useful way for
our application.e imation P of a convex functionP can be characterized in terms of the

function P

Remark 17 A practical note for the implementation of the lineamprogramming problem:
Theorem 2.11 still holds true if (10), (11), (12), 5), (16), and (17) are replaced by



hnrF - o f &k Sk? \F}, hkp - o f Sxaxy &
x #0 andy =0 vertices of anS ? ,and G- -

max{Gk Sk?

3. The Algorithm

In the next definition we present an algorithm that generates linear programming

problems as in Definition 2.9 for the system (1). Istarts with a fixed triangulation of a

S> ... —, 1t b fet 7"t cote —St —"dfe%SHEZ fl<ePf ™ St%t fooce%
problem does not possess a feasible solution. Thefieement is such that eventually a

linear programming problem is generated, which posse&s a feasible solution, whenever

the origin is an exponentially stable equilibrium ofthe system and D is in its basin of

attraction. This is proved in Theorem 4.2 in the nebsection, the main contribution of this

paper.

Definition 3.1 (The algorithm.) The main idea of the algorithm is to define a se@mce of
finer and finer grids, indexed byK. They become finer both near the origin, so a finend
smaller fan, as well as outside. Hence, O and D widit depend

onFor the algorithm we first initialize a few paramders. LetK, whereas K and Ik do
depend om Kn. Q BRnxn be an arbitrary, positive definite matrix and letP BR x be the
unique solution to the discrete Lyapunov equation ). We fix a real numbero> 0 and

positive integers Nio,Nop, and Nop. Define

l0:=Ni,0F0, :=NopFo, [D»:=NbpphFo,
lo &% lod]", &+ Q&»]", &= Dodx]", Fo &+ Fodo]". The number Nio must be

chosen such thalNop>Np - t fe1

This last inequality implies

cf. Remark 11.
The numbersNop and Nopo must be chosen such thalpbo > Nopand g ? &4 <ataa



(45)

For all K BNo we define

Fk:= 2«Fo,N,k:=Ni,0, Ik := Ni,KFK,

No,k:= 2<Nop, Ok := No,i¥« = NopFo, ND,k:= 2kNDp,

Dk := Np,k« = NpoFo, Fk &+ Fedn, IK &% lkd]n.
We fix constantsB and Gsuch that

and

Now, for anyK BNowe can construct a linear programming problem as in Oimition

2.9 with F := F¢, Ni := Nik, No:= No,k andNb := Np,x Then the constantd, O, andD in
Definition 2.9 are given byl := Ik, O:= Ok= Qv, andD := Dk = Do. Note especially thaf :=
Fcand| :=Ikchange withK but Oand D do not. Thus,

(45) holds true with Gvreplaced byOcand Doreplaced byDk.

Further, for all K B
Nbecauseand
therefore

Hence, the matricefQand P and the parameters
No,k andNb:=Nb kare suitable to initialize the linear programming prdlem in Definition

2.9. Denote by ksuch a linear programming problem initialized with these parameters,
the triangulation Tk := Tk,Pd«, and Bk:= B and Gk:= G for all simplices Skin the
triangulation of D as defined in (7). The algorithnis as follows:

1. SetK=0.

2. Construct the linear programming problemLk as described above.
3. If the linear programming problem Lk has a feasible solution, then use it to

parameterize a CPA Lyapunov functiol’ &8 R for the system (1) as in Theorem

2.11. If the linear programming problemLk does not have a feasible solution, then
increaseK by one, i.eK ZK+ 1, and repeat step 2.

Remark 18If better estimates for theBki e f &ki* — Shfeeuniform boundsB and Gin the
algorithm are available, then these can and shoulsk used.



Remark 19Note that the scaling factordrom item (3) in Definition 2.3 for the simplicial
complex Tk= Tk,ptdkis O= 2&Fk= 2.

The number of simplices in the simplicial fan at therigin grows exponentially. Indeed,
it is not difficult to see that the simplicial fan d Tk+1 contains 2" d-times the number of

simplices in the simplicial fan of k.

4. Main result

First, we state a fundamental lemma, the results ofivich are used in the proof of Theorem
4.2, which is the main contribution of this paper.tlensures the existence of a certain
Lyapunov function for the systems (1) if the origins an exponentially stable equilibrium.
It states results similar to Theorem 3.3 in [14] forcontinuous, planar systems, adapted to
n-dimensional discrete systems.

Lemma 4.1 Consider the system (1) and assume that the origiansexponentially stable
equilibrium of the system with basin of attractioA. Let QDR"x"be an arbitrary positive
definite matrix, A:=Dg(0) be the Jacobi matrix af at the origin, and PBR"x"be the unique
(positive definite) solution to the discrete Lyapunov equat ATPA® + @. Let D be a

subset ofA. Then there exists a function V@ R that satisfies the following conditions

a) Ais an open set and VWO (A \ {0},R).

b) There is a constant G 2 » such that

(46)
sup aW(x &Cu*p\(0% 5
c) F-uBminxa eeea Forall0, B (ddine
(47)
Then there is a constant A &» such that
A
foral0, B 0 B (48)
d)
W(x - xae and Wog(x W(x 9 «<tea (49)f—
or

allx b . Here 4 <ata —-St = ""'e wv &
T Si"f <o f ... ‘OsucfithatA !
W(x +xa forallx B A (50)

Proof.The idea of how to construct the functiorWV is as follows: Locally, at the originWv
is given by the formula (50) and away from the origi by



the formula 0 a constant. In betweenWV is a smooth
interpolation of these two. First we work this congruction out and then we show that the
constructed function fulfills the claimed propertiesa), b), c), d), and e).

For completeness we show that A is open: Since theguilibrium at the origin is

exponentially stable, there isanB>0 suchthat BE? & fef feo f'X®"fA">St"F <o f

K BN such thatg-k(x) b k2. By the continuity ofg-kthere is a A 0 such that for ally B

~

X + Bawe haveg-ky ®-k(x)+Bi2? E? 4 yaEaa Sce ™' —7t S'Zt t“—fZ27>

the origin was merely asymptotically stable.

Definition of W: Since P is a solution to the discrete Lyapunov equation
(8), it follows immediately thatx &is a Lyapunov function for the
linear systemxu+1=Axk, €« ¢ satisfying
2
Q

Sinceq is differentiable at the origin, the function) := g(x &x)/ aeaefulfills lim x\ 0 %x)

=0. Simple calculations give, with ) :g(x &x + xe&%x), that

e X (51)
= [ %ix) + AX]TP[ %x) + Ax  XTPx
1
« B @ HX e Bx x° téerxed
+ xd@n? ek X aRe HMX 2 téeD
and it follows that there is a A>> 0 such that for allx BBa

Hence, with we have, because

and forallx B A\ {0}, that



for
all x

Bl {0}. Thus
Vp Ve zeta (52)
forallx b &

Consider the functionWe a R,

We (x : (53)

It follows from the exponential stability of the equilibrium that the series on the right-
hand side is convergent and in the proof of Theore®.8 in [11] it is shown that

g W clearly
e & (54)
k=0 k=1
and
W(g(x) € « € W(x)=A @KkD(x 8o «@kx %) * xaf (55)
k=0

for allNow choose ax B r& Osuch that{x BR":Ve(x § ? aand define the setdRn
“Ve(X)<r/2}and B:={x D

Eo:={x BR":Vp(X)>r €.

See Figure 2 for a schematic picture of the sets, D\(E1 & 2),andB & —-Sf— ™M ™77 —o

in the rest of the proof.



Figure 2. Schematic figure of the sefs1,D\ (E1 € 2), andEz & .

Let O 1]) be a non-decreasing

function, suchthatand@. Such a

T =<t L fe L Ltee—— L —E > M@ - 1f 8T o3 PR ZX) S0 ffor
allex b 1, and @x) = 1 for allx B 2. partitions of unity, cf. e.g. [39]. Ther@x) := QVr(x))
fulfills ),
Define
> =
max ae
W(X).
Note that this definition ofe >and W > ex
(56)
and (57)
WAx Br «v %eR* - + «tee : (58)

We define for allx B e the function W through



Wx) = @)W (x) + (1 @x)) Ve(X). (59)

We will now check that the function ) satisfies the
properties a) e).a) Because QVr, andWesareinCG ) then
SO isW.

b)  For everyx +0 we have IVp(x) =Px/ seaeso for everyx +1 0

Because | W is continuous on the compact set D \ £and W and Ve coincide on B sup
BW(x @& max max. #W(x asup: aVe(x @ < 2»*p\%*p\eXp \{% and there is a
constant Cisuch that (46) holds true.

C) Denote by pmax the maximum absolute value of the entities ofP, i.e. pmax :=

Define
A = max
For an
arbitrarybe such
that

To show (48), we distinguish between the two cases ® \E1andy D 1. In the first case,
(48) clearly holds true because

Now assume thaty B 1. In this case W(x) coincides with V(x * xain a
neighbourhood ofy and we have the formula (36) for its Hessian matrixBy definition, As
is the maximum of the absolute values of the entitiesf the HessiarHw(x) for

x B \ BBand because we have

(60)
Hence, estimate (48) holds true for all 0
d) For dl x B 1we have W(x) =
Ve(X) + xa@ For allx B \E1we have by

(59) that W W>and Vr. Hence, by (56) we have



forallx B \E1

and the first estimate in (49) holds true.
To prove the second estimate in (49) we consider tlee complementary casess B 1,x

D \(E1& 2),andx D28& &4 .."4 <%o—"F td St <tfe—c—>
W(g(x  W(x)

= € Q) WHg(x)) + (1 Qg(x))) Ve(g(x)) d)WHx) (1 @x)) Ve(x)
« « e « « (61)

W g X W X
QNI Ve(9(x))

«Ve(X)]

(62)

forallx B \E2

becauseVris a Lyapunov function for the system (1) on B@ \E2. This implies,

because Qs monotonically increasing,

e Q) = @Wx -@(VWP(g(x)) = Qg(x))2 forallx P \Eo(63)
as well as
xBDi1ogx b andx b \ og(x DB\E. (64)

Case 1:Assumex D 1, then by (64) and the definition of Qve have @x) = @g(x)) = 0 and
by (61) and (52) we get
W(g(x  W(x)=Vr(g(x ¥r(x I <tea (65)

Case 2Assumex B \ (E1 € 2). Thenby (63) @g(x <«@Xx 9 r feT ,> wx

0 so (62), (57), and (52) deliver
W(x)



1 Q) Wexg(x) “Wexlea s @) IVe(g(x) QvR(x T

max{Wexg(x))2 «We (x), V(g(x ¥ (x T <teee

Case 3Assumethatx B & —e—<«Z —St fet ‘'~ —Sce "fI'ag ME SFooetty 4SSt
three casegg(x D2& &(x D\(E1é 2),andg(x Diseparately. lfig(x D28& & —Ste
@) = Q(x)) = 1 and
(61) and (57) imply
X &
19 r fet > wx

)). We can use this to simplify (62) and then use @ to estimate

= Qo) Wegx  wE)]] 2 s @op)liversgx  wlex)]]

TQa(x)[We (gxx  We(x)+ (lo«Qy(x))) W(g(x W (x)
If g(x Deithen Qg(xe)) = 0 and @x) = 1 and (61) simplifies to>=
Wxg(x WX I <teese

W(g W (x).
Nowg(x Biimplies 2andsincex D2é& &4 ™Mt Sf~%
e>W(g(x « W(x) < rlt «

Wexx f2xeseaW(x) =W (x). Thus, by (58)
and we have proved that the second estimate in (4%jolds true.



e) By constructionW(x) =Vr(x +x aefor all x B 1and Evis an open neighbourhood
of the origin. Thus, for small enoughA @ we have Ba? 1and (50) follows.

Remark 20.The second order derivatives ofV will in general diverge at the origin, but at
a predictable rate as stated by (48).
Remark 21.The next theorem, the main result of this paper, isalid for more general

sequences (K)k o of triangulations, where Tk+1is constructed from Tk by scaling and
tessellating its simplices, than for the sequence KJk®oin Definition 3.1. However, it is
quite difficult to get hold of the exact conditionsthat must be fulfilled in a simple way so
we restrict the theorem to this specific sequence.

Now we are ready for the main results of this paper.

Theorem 4.2Consider the system (1) and assume that the origiansexponentially stable
equilibrium of the system with basin of attractiod. Assume thabD in Definition 3.1 is a
subset ofA. Then, for every large enough RNo, the linear programming problenlkin

Definition 3.1 possesses a feasible solution. Especialyalgorithm in the same definition
succeeds in computing a CPA Lyapunov function fordstem in a finite number of steps.

Proof.We show that for all large enoughK BNo the linear programming problem Lk has
a feasible solution. Let us first consider the matces and constants that are used to

initialize the linear programming problem Lk, K BNo. The matricesP and Qand then the

constants , andHmax, are all independent ofK. So are the constant®kand Gk
becauseD = Dk= Dofor all K BNo. Indeed we seBk=B and Gk= Gin the algorithm for all
K BNo, which implies that G-is also independent ofkK BNo (since Gis the same for all

simplices). In contrast to this, the constant& x hir, h & pPand EFdo depend onK BNo.

For a particular K BNo we have for these constants in the linear programmingroblem

Lkthat for an Skb k= Tk,std,

hkdz & «geet+ B2 KRoif S , (66)
X,y E5k

which implies
and

2 KFo=F Thr| Ak + 82 &Foif Sk? K.

Similarly



hEpa+ «f% «paex HlandyF 0 vertices of SK? «}

(67)
and

(68)
in Lk.
SetVxi=W(xi) for all vertices x; of all simplicesS of the triangulation Tk, whereW is the

function from Lemma 4.1 for the system. Further, sete variable Cequal tonCg where
Cuis the constant from Lemma 4.1. We show that the lime constraints (I)-(IV) in

Definition 2.9 are fulfilled for Lk, wheneverK BNois large enough.

For all Kso large that k ? 4 the constraints (l) are fulfilled for Lk by (50). For allK B
No, the constraints (Il) for Lk are fulfilled by (49). By the Mean Value Theorem an¢i6)
we have |(IVQi Tdndependent ofi and Kand therefore the constraints (I1) are fulfilled
for Lk. We come to the constraints (1V).

Letxi =1 0 be an arbitrary vertex of an arbitrary simplexSkD k,Sk? k= Q. Then

g(xi B for some simplexS.= cofyoy1,..yn Bkand we haveg . We
have assigned/x=W(x) for all vertices x of all simplices
S of the triangulation Tk. Hence,
()
j=0 j=0 1 « toe @by (49)

If Sy ? \ Fke, then we can use Proposition 2.10, (48) withe= Fkand (66) to get the

estimate
(69)

Thus,



and the constrains  (21)
are fulfilled if

Because

and holds true

for all large enoughk BNod ™ 1 %o+ —¥a & ®

N2AR2 &K+ CG n2 &Ko =XiQ (70)
and the constrains (21) are fulfilled for all largeenoughK BNo.

If Sy ? kandKis so large that K ? 4 then we haveW(y; +yjafor j=0,1,...,rand we
can use the estimate (40) in the proof of Theorem 211to get the estimate

: (71)
using (67). Thus, by (68)
and hree & 1 & we have
Since
we get, similarly to (70), that the constraints (22
are fulfilled if

which again is clearly the case for all large enougt

5. Example

As a proof of concept, we compute a CPA Lyapunowétion by the methods described in
this paper as an example. We consider the system

(72)
from [11]. That is, the system (1) with



g
With

we can assign

and Bk=2.-2=4
forall SkD <o —St Zcotf” "7 %o foeeco%o 'V, ZFtA{R e ST cfitiefe of —"¢3§
of g at the origin is given by
«
We setQ:=1, i.e. the identity matrix, which results inP := 4/ 3:1 being the solution to the

discrete Lyapunov equation (8). We take

S V K»

as the objective function of our linear programmingproblem, and we minimize it. Thus, a
feasible solution with a flat gradient will be seleted in order to obtain equally distributed
level sets of the Lyapunov function.

We solve the linear programming problem from Definitim 2.9, constructed for the

system (72) with the triangulation Tk,Btd, where the parameters areK = 4,F := 0033, N|
= 2,No:= 10, andNp:= 12. For these parameters the linear programming j@blem has a
feasible solution, which was computed using the GniLinear Programming Kit
(http://www.gnu.org/software/glpk/) from Andrew Makh orin. The computed CPA
Lyapunov function is depicted in Figure 4. As desired in Definition 2.5, a simplicial fan
<o —eot T —' —7<f *% 032(.038]2. Fhis simplicial fan is depicted in Figure 5. The
Trefee *° —SF el ——1+ > —e'" "MpeF,No-FJ? k¢ «306,0.396]2.
The largest connected component of a sublevel sebropact in O = & -F,N -F]2 =

« 83,0.33]2is assured to be in the basin of attraction of thequilibrium at the origin, cf.
Remark 3. This set is depicted in Figure 3.

Let us compare these result with the quadratic Lyamov
function, obtained by solving the discrete Lyapunoequation. By
equation
WS a «

0
for all x such that

where %x) = (g(x @x)/ sead ‘-1 -G = xam By using the general estimate
TE" < Et Tt =Z> [, <ot —fZ %ot —VvEkaRAZ0an ™



is a Lyapunov

function for the

system in the set
Yasr 3

0.224.

In Figure 3 we compare these lower bounds on the b of attraction with the lower
bounds delivered by the CPA Lyapunov function fronabove. For further
comparison we solved the linear programming problemrbm Definition 2.9
for the same system with the parameter& =5,F= 0.1, Ni= 2,No= 4, andNb=

X4 ‘"t'7f7a ™t t§5...7Z—11 .10.1]7em $he canstramts (IV). Note, that in
this case the sublevel set in Figure 3 is a forwaridvariant set with the property that

for anythat Xt k,in the sublevel set, there exists a sequence ( B  +.1,&Y]%forallk B

N. Since B=[)kPw0.withl ,0.1]tk2js a subset of 2»a «—... S

the basin of attraction, as shown by the quadratid.yapunov function, we can als
conclude that the sublevel set is a subset of thebin of attraction.

Figure 3. The figure shows three subsets of the basf attraction. The smallest one is obtained by
the quadratic Lyapunov function, derived from the dcrete Lyapunov equation, the middle one is
obtained by the CPA Lyapunov function with the simptial fan at the origin, and the largest one is
obtained by the CPA Lyapunov function excluding treet + & 0.1]2.



Figure 4. The CPA Lyapunov function without the fanomputed for the system (72). The CPA
Lyapunov function computed with the fan looks vensimilar but is defined on a smaller domain.

X
Figure 5. The simplicial fan and its closest neigltloirhood of the simplicial complex.

6. Conclusion and Future Directions

In this paper, we fully adapted the CPA method to ogoute Lyapunov functions to
autonomous discrete systems. In Definition 2.9 we psented a linear programming
problem, of which a feasible solution parameterizes £PA Lyapunov function for the
system in question. In Definition 3.1 we offered aralgorithm that generates linear
programming problems as in Definition 2.9 for ever moe refined triangulations of a
hypercube D containing the origin. In Theorem 4.2 wproved, that if the system at hand
has an exponentially stable equilibrium at the origi and D is a subset d(REFERENCES



its region of attraction, then the algorithm succeds in a finite number of steps in
computing a CPA Lyapunov function for the system.rilly, in Section 5, we have applied
the method to an example and have computed a CPA Lyapu function.

The CPA method for continuous systems has been exted to compute CPA Lyapunov
functions for switched systems [19] and differential inclusions [2, 3]. It seems very
promising for further research in this direction to combine the theory on the stability of
difference inclusions and smooth Lyapunov functiongjiven in [24 27] with the theory
developed in this paper to design an algorithm toampute CPA Lyapunov functions for
exponentially stable difference inclusions.
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