University of Sussex
Browse

File(s) under permanent embargo

Efficacious N-protection of O-aryl sulfamates with 2,4-dimethoxybenzyl groups

journal contribution
posted on 2023-06-08, 18:55 authored by Tristan Reuillon, Annalisa Bertoli, Roger J Griffin, Duncan C Miller, Bernard T Golding
Sulfamates are important functional groups in certain areas of current medicinal chemistry and drug development. Alcohols and phenols are generally converted into the corresponding primary sulfamates (ROSO2NH2 and ArOSO2NH2, respectively) by reaction with sulfamoyl chloride (H2NSO2Cl). The lability of the O-sulfamate group, especially to basic conditions, usually restricts this method to a later stage of a synthesis. To enable a more flexible approach to the synthesis of phenolic O-sulfamates, a protecting group strategy for sulfamates has been developed. Both sulfamate NH protons were replaced with either 4-methoxybenzyl or 2,4-dimethoxybenzyl. These N-protected sulfamates were stable to oxidising and reducing agents, as well as bases and nucleophiles, thus rendering such masked sulfamates suitable for multi-step synthesis. The protected sulfamates were synthesised by microwave heating of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a substituted phenol to give an aryl 2-methyl-1Himidazole-1-sulfonate. This imidazole-sulfonate was N-methylated by reaction with trimethyloxonium tetrafluoroborate, which enabled subsequent displacement of 1,2-dimethylimidazole by a dibenzylamine (e.g. bis-2,4-dimethoxybenzylamine). The resulting N-diprotected, ring-substituted phenol O-sulfamates were further manipulated through reactions at the aryl substituent and finally deprotected with trifluoroacetic acid to afford a phenol O-sulfamate. The use of 2,4-dimethoxybenzyl was particularly attractive because deprotection occurred quantitatively within 2 h at room temperature with 10% trifluoroacetic acid in dichloromethane. The four key steps in the protocol described [reaction of 1,1'-sulfonylbis(2-methyl-1H-imidazole) with a phenol, methylation, displacement with a dibenzylamine and deprotection] all proceeded in very high yields.

History

Publication status

  • Published

File Version

  • Published version

Journal

Organic & Biomolecular

ISSN

1477-0520

Publisher

Royal Society of Chemistry

Issue

37

Volume

10

Page range

7610-7617

Department affiliated with

  • Chemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2016-01-15

First Compliant Deposit (FCD) Date

2016-01-15

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC