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Abstract

Commercial greenhouse growers in both Japan and China are increasingly using reared orange-tailed bumblebees known
previously asBombus hypocritaPérez as pollinators. Phylogenetic analysis of the DNA (COI) barcodes with Bayesian methods
shows that this ‘‘species’’ is a long-standing confusion of two cryptic species. We find that the orange-tailed bumblebees in
North China are actually part of the widespread Russian (otherwise white-tailed)B. patagiatusNylander (asB. patagiatus
ganjsuensisSkorikov,n. comb.), whereas the orange-tailed bees in Japan are trueB. hypocrita. This situation has been
further complicated because two other cryptic species from North China that were previously confused with the RussianB.
patagiatusare now recognised as separate:B. lantschouensisVogt n. stat. and B. minshanensisBischoffn. stat.. As demand
for pollination services by greenhouse growers inevitably increases, these bees are more likely to be transported between
countries. In order to conserve genetic resources of pollinator species for their option value for future food security, we
advocate preventing trade and movement ofB. patagiatusfrom China into Japan and ofB. hypocritafrom Japan into China.
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Introduction

Commercial movement of species outside of their natural ranges
has had significant negative impacts on biodiversity [1–3].
Consequently, such translocation is now regulated at national
and international levels [4]. To be effective, regulation depends
upon accurate taxonomy to identify the relevant species. Here we
show that imprecise taxonomy poses a substantial threat to
ecologically important pollinators.

Bumblebees are among the most important pollinators in wild
ecosystems, but recently have been suffering worldwide declines
[5,6]. At the same time, bumblebees have become increasingly
important commercially for their pollination services to agricul-
ture, especially for tree fruits, berries, and greenhouse crops such
as tomatoes [7]. This has led to the widespread movement of
bumblebees between countries to provide pollination services, an
industry now worth billions of dollars annually [8–10]. Such
commercial translocation has resulted in the introduction and
invasion of exotic bumblebee species (and their pathogens) into
New Zealand [11], Tasmania [12], South America [13,14], and
Japan [15,16].

The situation in Japan has been particularly well-studied.
There,Bombus terrestris(Linnaeus) was introduced from Europe into
greenhouses, but feral colonies were soon discovered and the
species has shown not only invasive spread within Japan, but is

also replacing the indigenousB. hypocritaPérez in many areas
[15,16]. One solution is the commercial development of
indigenous pollinators and in Japan,B. hypocritais undergoing
trials [17]. In China, government-funded research projects have
been established to study the feasibility of what has been
understood to be the same species [18–20].B. hypocritais currently
recognised as an orange-tailed species, believed to be distributed in
both Japan and China [18,21–27]. Alongside these bees in China,
some other bumblebees with white tails are also being used as
greenhouse pollinators [28] and many of these have been widely
referred to previously using the nameB. patagiatusNylander
[18,22,25,26,29]. But just asB. hypocritain Japan is currently
seriously threatened by introducedB. terrestris(Linnaeus), so
populations of all of these bumblebees in Japan and China could
be threatened by introductions between countries if the bumble-
bees used are in fact not conspecific.

All of these commercially important species belong to the
subgenusBombus s. str.and many of these species are well known
for being cryptic in Europe [30]. Not all individuals can be
identified with confidence using morphological characters [31]
and specialists also disagree among themselves on the precise
criteria for diagnosing them [32]. Nonetheless, support for the
interpretation that there are separate species continues to grow
from studies of morphology [33], enzyme electrophoresis [34,35],
male labial gland secretions [36,37], and DNA sequences [38–41].
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However, this European work has been done against a
background of very patchy knowledge of the Asian species of the
group.

In this paper we use DNA barcodes to show that the orange-
tailed bumblebees previously recognised asB. hypocritain Asia are
actually comprised of parts of two more geographically restricted
species:B. hypocrita, and a part ofB. patagiatuswith an unrecognised
cryptic colour pattern. Given that these bees are already being
used for pollination in greenhouses in Asia, we discuss the
consequences of our results for conserving the genetic resources of
these commercially valuable pollinators and the need to restrict
movement of bumblebees between China and Japan.

Materials and Methods

Sampling bees
We sampled bumblebees as part of a review of all of the species

of the subgenusBombus s. str.across their entire global distributions
[42], which encompass most of the northern hemisphere. Progress
with the taxonomy of this group using only morphological
evidence has been difficult [31], but recently new insights have
been gained by using DNA-sequence data [38,40]. In insects,
sequences of the mitochondrial COI (cox-1) gene have been used to
discover species identical to those recognised by more traditional
methods [43]. Inheritance of mitochondrial genes is reasonably
well understood [44]. It avoids the problems with nuclear genes
that arise from having multiple alleles, while the absence of indels
makes alignment for homology straightforward. Mitochondrial
genes also have a relatively high substitution rate, so that even the
short COI ‘barcode’ region of 658 nucleotides can be used to
distinguish the most closely-related taxa [45,46], and COI-
barcode sequences as short as 100 nucleotides can be diagnostic
for 90% of the species in other animal groups [47]. Consequently,
despite many potential pitfalls and the desirability of external
supporting evidence, COI barcodes can be useful for recognising
likely cryptic species [48]. Permissions for collection and export of
bumblebee specimens from China were obtained via the CAAS
Institute of Apiculture and CAS Institute of Zoology, number
2010-86 issued 15.ix.2010.

DNA-barcode data
Most specimens were extracted, amplified, and sequenced at the

Biodiversity Institute of Ontario, University of Guelph, as part of
the BEE-BOL campaign to barcode the bees of the world [49].
COI-barcode extraction, amplification, and sequencing used the
standard protocols described by Hebertet al. [45]. Universal
primers for the COI-barcode sequence for insects were used
(variantsLepF1and LepR1[50]). COI-barcode sequences (without
primer sequences) from the samples were aligned using the
ClustalW function within BioEdit (version 7.0.9.0; www.mbio.
ncsu.edu/BioEdit/bioedit.html, accessed 2010) and trimmed to a
common frame length of 658 nucleotides that is shared by most
samples. Overall, we analysed 559 sequences from 279 localities in
33 countries from throughout the world-wide range of the
subgenus. For the analysis reported here, sequences for species
that are the focus of this paper (i.e.B. hypocrita, B. patagiatus, and
cryptic relatives: 106 sequences) were reduced to 20 unique
haplotypes using Collapse (version 1.2; darwin.uvigo.es/software/
collapse.html, accessed 2011) after ranking sequences by their
length. For the species that are not the focus of this analysis, we
used sequences from among the samples available that were
collected closest to the species’ type localities (details of sequence
data are given in Appendix S1).

Phylogenetic analysis
Phylogenetic relationships among sequences were estimated

using MrBayes (version 3.1.2 [51,52]), from 10 million generations
of the metropolis-coupled Markov-chain Monte Carlo (MCMC)
algorithm with four chains, chain temperature set to 0.2, and with
sampling of the trees every 1000 generations. We found the
nucleotide-substitution model that fitted our COI-barcode data
best according to jModelTest (version 0.1.1 [53]) to be the general
time-reversible model with a gamma frequency distribution of
changes among sites and allowing invariant sites (GTR+G+I).
Burn-in was set initially to 10%, with convergence between two
separate runs of the analysis judged to have occurred when the
average standard deviation of the split frequencies approached
stationarity. Post burn-in stability of the log likelihood of the cold
chain was confirmed using Tracer (version 1.5.0 [54]) and stability
of the sample groups was confirmed using AWTY (version 0.8.1
[55]). The sample of 16,002 post burn-in trees from both replicates
was combined. Trees were rooted using data for the sister groups
of Bombus s. str.as sequences fromB. (Pyrobombus) vagansSmith, B.
(Alpinobombus) alpinus(Linnaeus), andB. (Al.) balteatusDahlbom
following the results of Cameronet al.[56] from a phylogenetic
analysis of five genes across almost all bumblebee species. MEGA
(version 4.0 [57]) was used to generate intra- and inter-group
genetic distances and to determine the number of informative
polymorphisms that support the phylogenetic grouping of the
cryptic taxa and the recognition of new species. Genetic distances
(sequence divergences) were calculated using the Kimura two-
parameter (K2P) distance model [58]. The translated amino acid
sequences were also compared to determine whether polymor-
phisms were non-synonymous. Treatment of taxon names follows
the rules laid down by ICZN [59].

Results

Our estimate of phylogenetic relationships from COI sequences
(Figure 1) shows only weak support (posterior probabilities) for
several of the species groups, including especially those represent-
ing the relationships ofB. hypocritaand B. magnusVogt with other
species. However, this tree shows strong support for the
monophyly of the groups interpreted here as the speciesB.
hypocrita, B. lantschouensisVogt, B. minshanensisBischoff, andB.
patagiatus. It does not support a monophyletic group of orange-
tailed bees (o) among the white tailed bees (w) within our focal
group ofB. hypocritaand B. patagiatusin the former broader sense.
In contrast, among these bees it supports: (1) that there are two
relatively distantly related groups of Asian orange-tailed bees - one
group in Japan, Korea, Primorsky, and Sakhalin (B. hypocrita) and
another group in North China (B. patagiatus ganjsuensisSkorikov);
and (2) that the white-tailed bees considered previously to be a
single species,B. patagiatus, are comprised of at least three distinct
groups (B. lantschouensis, B. minshanensis, and B. patagiatus).

The recognition ofB. hypocrita, B. lantschouensis, B. minshanensis,
and B. patagiatusas separate species is supported by a number of
unique and diagnostic polymorphisms (Table 1). Fifteen, four, and
five unique polymorphisms are present in COI barcodes for each
of B. hypocrita(8 haplotypes),B. lantschouensis(3 haplotypes), andB.
minshanensis(3 haplotypes), including non-synonymous polymor-
phisms. Within-group K2P distances for these species are low,
ranging from 0.002 to 0.004 (Table 2).B. patagiatusis characterised
by seven unique polymorphisms, although a clear divergence exists
within this group, as indicated by the high intra-group distance
value of 0.014 (synonymous polymorphisms). Two subgroups are
recognised: Group 1, of haplotypes from white-tailed bumblebees
from Russia and the far north east of China; and Group 2, of
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haplotypes from both white-tailed and orange-tailed bumblebees
from North China. Analyses of these groups separately showed
intra-group distances of 0.002 (Group 1) and, 0.001 (Group2).
The latter value equates to just one polymorphism among the 42
specimens and three haplotypes ofB. patagiatusfound in this study.
Eleven unique polymorphisms are shared by the COI barcodes for
B. patagiatusGroup 2 (Table 1), providing strong support for the
cryptic status of the orange-tailedB. patagiatus ganjsuensisand the
placement of these orange-tailed bumblebees as part ofB. patagiatus
and notB. hypocrita.

Discussion

Taxonomic revisions of bumblebees and other commercially
important insect groups are needed in part to prevent people from

inadvertently transporting cryptic non-native species. Such revisions
crucially need to be global in scope, both to include all of the known
species as well as to include broadly representative samples from
across the entire breadths of all of the species’ geographic ranges.
Attempts to revise groups from more restricted geographic sampling
have led to problems. For example, the nameB. minshanicolaBischoff
has recently been used [60] for a ‘neglected taxon’ ofBombus s. str.
from China. This name does not appear in our Figure 1 because we
agree from a global analysis [42] with earlier studies [61] (see also
[33]) that recognisedB. minshanicolafrom Gansu as part of the
broader speciesB. longipennisFriese, which extends further west
within China and the Himalaya. While we also note that there are
many potential pitfalls when using COI barcodes for exploring
relationships among taxa [62], there is as yet no evidence that these
have affected studies of bumblebees [60,63].

Figure 1. Estimated Phylogenetic Tree for Asian Bumblebees Resembling B. hypocrita and B. patagiatus. Consensus Bayesian tree for (o)
orange- and (w) white-tailed examples representing the unique haplotypes from among 106 COI-barcode sample sequences ofB. hypocrita, B.
lantschouensis, B. minshanensisand B. patagiatus, together with examples representing all of the other species ofBombus s. str.(from a total of 559
sequences). The codes following the taxon names are the specimen identifiers from the project database and from BOLD (or from other external
databases including GenBank), followed by country and province. Values next to the nodes are posterior probabilities for groups (groups with values
of , 0.9 are considered unreliable) and the scale bar represents 0.08 substitutions per nucleotide site.
doi:10.1371/journal.pone.0032992.g001
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Disambiguation of species
Figure 2 uses our sequenced samples to map the former concept

of B. hypocrita, as revised by Tkalcu [21] (map on his page 89) as a
taxon of orange-tailed bumblebees, distributed from Gansu to
Japan. From our COI-based estimate of relationships (Figure 1),
we recognise two species within Tkalcu’s [21] broader concept in
Fig. 2:B. hypocritain Japan and adjacent Pacific provinces of Asia
(syntypes examined, Muséum National d’Histoire Naturelle,
Paris), and a second species in North China. For the latter
Chinese bumblebees, the oldest available name isBombus ikonnikovi
ganjsuensisSkorikov [64] (holotype examined, Zoological Institute
of the Russian Academy of Sciences, St Petersburg), revised here
to Bombus patagiatus ganjsuensisSkorikov (new combination).

Similarly, Figure 3 maps the former concept ofB. patagiatus, as
revised by Tkalcu [29] (figure on his page 52) as a taxon of white-
tailed bumblebees, distributed from near the Finnish border of
Russia in the west to Sachalin in the east, and then south
westwards through North China to Gansu and Sichuan. From our
COI-based estimate of relationships (Figure 1), we recognise three
species within Tkalcu’s [29] concept in Fig. 3:B. patagiatus patagiatus
s. str.(type presumed lost [29], although the taxon concept is not in
doubt),B. lantschouensis(new status, syntypes examined, Zoölogisch
Museum der Universiteit van Amsterdam), andB. minshanensis
(new status, syntypes examined, Museum für Naturkunde an der

Humboldt-Universität, Berlin).B. lantschouensisand B. minshanensis
are reciprocally monophyletic with non-synonymous polymor-
phisms and no individuals with intermediate colour patterns are
known to us, so we recognise them as separate species for the first
time. Assessment of evidence from DNA barcodes has uncovered
multiple cryptic species in other insects [45,48], suggesting that
this situation could be widespread among insects.

In consequence, our revised concept ofB. patagiatus(Figure 4)
reunites white-tailed bees (open circles) from the Taiga forests of
Russia to the north of the Mongolian desert, with orange-tailed
bees (black spots) previously misidentified asB. hypocrita, from the
hills of North China on the southern side of the Mongolian desert.
During specially-targeted fieldwork in 2010, specimens were also
collected from an isolated patch of suitable habitat on a mountain
top (near Huanggangliang) in between these two regions, within
the barrier zone formed by the Mongolian arid belt (in Neimenggu
or Inner Mongolia). These individuals (our Group 2) all have the
COI haplotype ofB. patagiatus ganjsuensis, but have either varying
degrees of intermediate colour patterns with narrow dorsal pale
bands (likeB. patagiatus ganjsuensis) and white tails (likeB. patagiatus
patagiatus), or even have broad dorsal pale bands and white tails
resemblingB. patagiatus patagiatus(our Group 1). Therefore, while
the orange-tailed colour pattern appears to be restricted to the
south of the Mongolian arid zone, closely related haplotypes

Table 1. COI-Barcode Polymorphisms among Haplotypes ofB. patagiatusand B. hypocrita.

Nucleotide position

Tail colour Taxon 19 43 49 82 85 112 133 196 247 293 295 302 308

white B. patagiatus patagiatushaplotypes 1–3 C T A T T T G C/T T C T A A

white B. patagiatus patagiatushaplotypes 4–5 C/T C A C T C A T C T A C T

orange B. patagiatus ganjsuensishaplotype 1 C C A C T C A T C T A C T

orange B. hypocritahaplotypes 1–8 C T A/C T C T A C T T A C A

Nucleotide position

346 373 420 449 479 505 520 541 547 562 598 625 631

white B. patagiatus patagiatushaplotypes 1–3 A A T A C T C/T C T A C G G

white B. patagiatus patagiatushaplotypes 4–5 A A T A C T C T A A C G G

orange B. patagiatus ganjsuensishaplotype 1 A A T A C T C T A A C G G

orange B. hypocritahaplotypes 1–8 T C/T A/C G T C T T T T T A/G A

Bold nucleotides show diagnostic characters with respect to other species ofBombus s. str.(Figure 1).
doi:10.1371/journal.pone.0032992.t001

Table 2. COI-Barcode Characteristics forB. hypocrita, B. lantschouensis, B. minshanensis, and B. patagiatus.

Taxon
No. of
individuals

No. of
haplotypes

No. of unique
polymorphisms

Intra-group
distances Inter-group distances

B. hypocrita 16 8 11 0.005 hyp lan min patGrp 1 pat Grp 2

B. lantschouensis 37 3 4 0.002 hyp -

B. minshanensis 11 3 4 0.002 lan 0.06 -

B. patagiatusGroup 1 23 3 3 0.002 min 0.04 0.05 -

B. patagiatusGroup 2 19 3 7 , 0.001 pat Grp 1 0.04 0.05 0.02 -

B. patagiatus(Groups
1+2)

42 6 7 0.014 pat Grp 2 0.02 0.06 0.03 0.03 -

Genetic distances are calculated using the Kimura two-parameter (K2P) distance model [58]. Numbers of unique polymorphisms from comparisons of all four species
and the sister-taxaB. magnusand B. cryptarum(Figure 1).
doi:10.1371/journal.pone.0032992.t002
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Figure 2. Orange-Tailed B. hypocrita Sensu Tkalcu Recognised as B. patagiatus ganjsuensisand B. hypocrita. Distribution of the orange-
tailed taxonB. hypocritain the sense of Tkalcu [21], revised from the results in Figure 1 to two species: black spots,B. patagiatus ganjsuensis; and black
triangles,B. hypocrita. Records shown include only specimens identified in our data from COI barcodes. Map showing shaded relief and international
boundaries, Cartesian orthonormal projection.
doi:10.1371/journal.pone.0032992.g002

Figure 3. White-Tailed B. patagiatus Sensu Tkalcu Recognised as B. patagiatus patagiatus, B. lantschouensis, and B. minshanensis. Asian
distribution of the white-tailed taxon B. patagiatusin the sense of Tkalcu [29], revised from the results in Figure 1 to three species: white spots,B.
patagiatus patagiatus; grey spots,B. lantschouensis; and white triangles,B. minshanensis. Records shown include only specimens identified in our data
from COI barcodes. Map showing shaded relief and international boundaries, Cartesian orthonormal projection.
doi:10.1371/journal.pone.0032992.g003
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(Group 2) and individuals with intermediate colour patterns
extend into suitable habitats within the arid zone. We recognise
them all here as parts of one species for the first time.

Movement of cryptic commercial pollinators between
countries

Our results are significant because conserving the genetic
resources of commercially important pollinator species for their
option value for future food security in a changing world means
that we need to consider the potential consequences of moving
bumblebees and their pathogens outside their indigenous ranges
and into new contact with other species. It is already known that
introductions ofB. terrestrisinto Japan have resulted in the spread
of feral populations, the growth of which has coincided on a local
scale with declines in populations of indigenousB. hypocrita[15,16].
Therefore with due regard to the precautionary principle [5,65],
we advocate preventing any movement ofB. patagiatusfrom China
into Japan (where there are no indigenous populations ofB.
patagiatus) and of B. hypocritafrom Japan into China (whereB.
hypocritais, as far as we know, absent) until it can be proven safe.
We also recommend research to assess the potential of the
indigenous species for use in commercial pollination in green-
houses within each region. Deliberate movement of bumblebee
species between countries will otherwise become more likely as
increasing demand for food puts pressure on commercial growers

to deliver reliable pollination in ever larger areas of greenhouse
crops. Critically, minimising the risk from commercial movement
of species and their pathogens (to which different bumblebee
populations may have differing resistance, even within a species)
depends upon a full understanding of their taxonomy.

Supporting Information

Appendix S1 Accession numbers for sequence data for the
samples used in Fig. 1, including IDs from the BOLD database.
(DOC)
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géographique des bourdons japonais, avec descriptions et remarques sur
quelques formes nouvelles ou peu connues. Journal of the Faculty of Science,
Hokkaido University (Zoology) 17: 152–196.

25. Bischoff H (1936) Schwedisch-chinesische wissenschaftliche Expedition nach den
nordwestlichen Provinzen Chinas, unter Leitung von Dr. Sven Hedin und Prof.
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