University of Sussex
Browse

File(s) not publicly available

Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance

journal contribution
posted on 2023-06-08, 19:19 authored by Amjad Alhalaweh, Waseem Kaialy, Graham Buckton, Hardyal Gill, Ali Nokhodchi, Sitaram P Velaga
The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC > THF-URE > THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties. © 2013 American Association of Pharmaceutical Scientists.

History

Publication status

  • Published

Journal

AAPS PharmSciTech

ISSN

1530-9932

Publisher

Springer Verlag

Issue

1

Volume

14

Page range

265-276

Department affiliated with

  • Chemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2014-12-17

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC