Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells

Boumechache, Miyyada, Masin, Marianela, Edwardson, J Michael, Górecki, Dariusz C and Murrell-Lagnado, Ruth (2009) Analysis of assembly and trafficking of native P2X4 and P2X7 receptor complexes in rodent immune cells. Journal of Biological Chemistry, 284. pp. 13446-13454. ISSN 0021-9258

Full text not available from this repository.


P2X4 and P2X7 are the predominant P2X receptor subtypes expressed in immune cells. Having previously shown a structural and functional interaction between the two recombinant receptors, our aims here were to identify the preferred assembly pathway of the endogenous receptors in macrophage-like cells and to investigate the trafficking of these receptors between the plasma membrane and intracellular sites. We exploited the difference in size between the two subunits, and we used a combination of cross-linkers and blue native-PAGE analysis to investigate the subunit composition of complexes present in primary cultures of rat microglia and macrophages from wild type and P2X7(-/-) mice. Our results indicate that the preferred assembly pathway for both receptors is the formation of homotrimers. Homotrimers of P2X7 were able to co-immunoprecipitate with P2X4, suggesting that an interaction occurs between rather than within receptor complexes. In both macrophages and microglia, P2X7 receptors were predominantly at the cell surface, whereas P2X4 receptors were predominantly intracellular. There were clear cell type-dependent differences in the extent to which P2X4 receptors trafficked to and from the surface; trafficking was much more dynamic in microglia than in the macrophages, and further activation of cultured microglia with relatively short (3-h) incubations with lipopolysaccharide caused an approximately 4-fold increase in the fraction of receptors at the surface with only a 1.2-fold increase in total expression. The redistribution of intracellular receptors is thus an efficient means of enhancing the functional expression of P2X4 at the plasma membrane of microglia.

Item Type: Article
Schools and Departments: School of Life Sciences > Biochemistry
Subjects: Q Science > QH Natural history > QH0301 Biology
Depositing User: Tom Gittoes
Date Deposited: 25 Mar 2015 13:45
Last Modified: 25 Mar 2015 13:45
📧 Request an update