Releasing activity disengages cohesin's Smc3/Scc1 interface in a process blocked by acetylation

Beckouët, Frederic, Srinivasan, Madhusudhan, Roig, Maurici Brunet, Chan, Kok-Lung, Scheinost, Johanna C, Batty, Paul, Hu, Bin, Petela, Naomi, Gligoris, Thomas, Smith, Alexandra C, Strmecki, Lana, Rowland, Benjamin D and Nasmyth, Kim (2016) Releasing activity disengages cohesin's Smc3/Scc1 interface in a process blocked by acetylation. Molecular cell, 61 (4). pp. 563-574. ISSN 1097-4164

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB)


Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin's Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin's association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation.

Item Type: Article
Schools and Departments: School of Life Sciences > Sussex Centre for Genome Damage and Stability
Subjects: Q Science
Depositing User: Chris Chan
Date Deposited: 05 Apr 2016 09:44
Last Modified: 11 Sep 2017 07:39

View download statistics for this item

📧 Request an update