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1 Introduction

It is widely acknowledged that ultraviolet (UV) fixed points are central for quantum field

theories to be fundamental and predictive up to highest energies [1, 2]. A well-known

example is asymptotic freedom of quantum chromodynamics where the UV fixed point is

non-interacting [3, 4]. In turn, neither the U(1) nor the scalar sector of the standard model

are asymptotically free. This is known as the triviality problem, which limits the predictiv-

ity to a scale of maximal UV extension [5]. High-energy fixed points may also be interacting,

a scenario referred to as asymptotic safety [6]. It is then tempting to think that theories

which are not asymptotically free, or not even renormalisable by power-counting, may well

turn out to be fundamental in their own right, provided they develop an interacting UV

fixed point [7]. In recent years, asymptotic safety has become a popular scenario to address

quantum aspects of gravity [7–13]. In a similar vein, UV conformal extensions of the stan-

dard model with and without gravity have received some attention in view of interacting

fixed points [14–29] and scale invariance in particle physics and cosmology [30–53].

The most notable difference between asymptotically free and asymptotically safe the-

ories relates to residual interactions at high energies. Canonical power counting becomes

modified and the relevant or marginal invariants which dominate high energy physics are

no longer known a priori. Couplings may become large and small expansion parameters are

often not available. Establishing or refuting asymptotic safety in a reliable manner then be-

comes a challenging non-perturbative task [54]. A few rigorous results for asymptotically

safe UV fixed points have been obtained for certain power-counting non-renormalisable

models by taking the space-time dimensionality as a continuous parameter [6, 16, 55–59] in

the spirit of the ǫ-expansion [60], or by using large-N techniques [19, 61–68]. Asymptotic

safety then arises in the vicinity of the Gaussian fixed point where perturbation theory is

applicable. The success of well-controlled model studies provides valuable starting points

to search for asymptotic safety at strong coupling.

In this paper, we are interested in the UV behaviour of interacting gauge fields, fermions

and scalars in four dimensions. In the regime where asymptotic freedom is lost, we ask

the question whether the theory is able, dynamically, to develop an interacting UV fixed

point. Our main tool to answer this question is a suitably chosen large-N limit [69] (where

N refers to the number of fields), whereby the theory is brought under strict perturbative

control. Banks and Zaks [70] have used a similar idea to investigate the presence of

interacting infrared (IR) fixed points in gauge theories with fermionic matter. Here, we

will discover that all three types of fields are required for an asymptotically safe UV fixed

point to emerge. Given that exactly solvable models in four dimensions are hard to come

by, our findings are a useful starting point to construct UV safe models of particle physics.

We illustrate the main outcome for gauge-matter theories in the absence of asymptotic

freedom in terms of a running non-Abelian coupling (αg) and a running Yukawa coupling

(αy). Figure 1 shows the phase diagram close to the Gaussian fixed point to leading order

in perturbation theory. Renormalization group trajectories are directed towards the IR.

We observe that both the Yukawa and the gauge coupling behave QED-like close to the

Gaussian. Consequently, not a single trajectory emmanates from the Gaussian, meaning
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Figure 1. The phase diagram of certain 4D gauge-Yukawa theories in the absence of asymptotic

freedom and supersymmetry, in the vicinity of an asymptotically safe fixed point (UV). The renor-

malization group flow for the gauge coupling αg and the Yukawa coupling αy is pointing towards

the IR. The two renormalization group trajectories emanating out of the asymptotically safe fixed

point define UV finite quantum field theories which at low energies correspond to a weakly (G) and

a strongly coupled theory. Other trajectories exist as well, but they do not lead to UV finite theories

(within perturbation theory). Parameter choices and further details are given in section 3.7.

that it is an IR fixed point. The main novelty is the occurrence of an interacting fixed

point induced by fluctuations of the gauge, fermion, and scalar fields. The fixed point is

located close to the Gaussian and controlled by perturbation theory. The UV nature of the

fixed point is evidenced by the (two) UV finite renormalization group trajectories running

out of it. They lead to sensible theories at all scales: in the UV, they are finite due to

the interacting fixed point. In the IR, they correspond to weakly coupled theories with

Gaussian scaling, and to strongly coupled theories with confinement and chiral symmetry

breaking or conformal behaviour, respectively. We also find UV unstable trajectories which

do not emmanate from the UV fixed point. They equally approach sensible IR theories, yet

their UV predictivity is limited (at least in perturbation theory) by a scale of maximal UV

extension. In this sense, asymptotic safety guarantees the existence of UV finite matter-

gauge theories even in the absence of asymptotic freedom or supersymmetry.

In the rest of the paper we provide the details of our study. We recall the pertur-

bative origin of interacting UV fixed points and asymptotic safety for sample theories of

self-interacting gravitons, fermions, gluons, and scalars (section 2). We then explain why

and how asymptotic safety can arise for certain gauge-Yukawa theories in strictly four di-

mensions. Fully interacting UV fixed points are found and analysed together with their

universal scaling exponents, the UV critical surface, and the phase diagram of figure 1 (sec-
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tion 3). Aspects such as stability, Weyl consistency, unitarity, and triviality are discussed

(section 4), together with further directions for asymptotic safety within perturbation the-

ory and beyond (section 5). We close with some conclusions (section 6).

2 Origin of interacting UV fixed points

In this section, we recall the perturbative origin of asymptotic safety for certain quantum

field theories. We discuss key examples and introduce some notation.

2.1 Asymptotic safety

Asymptotic safety is the scenario which generalises the notion of a free, Gaussian, ultravio-

let fixed point to an interacting, non-Gaussian one. An asymptotivcally safe UV fixed point

then acts as an anchor for the renormalisation group evolution of couplings, allowing them

to approach the high-energy limit along well-defined RG trajectories without encountering

divergences such as Landau poles.

Within perturbation theory, the origin for asymptotic safety is best illustrated in terms

of a running dimensionless coupling α = α(t) of a hypothetical theory (to be specified

below) with its renormalisation group (RG) β-function given by

∂t α = Aα−B α2 . (2.1)

Here, t = ln(µ/Λ) denotes the logarithmic RG ‘time’, µ the RG momentum scale and Λ a

characteristic reference scale of the theory. A and B are numbers. We assume that (2.1)

arises from a perturbative expansion of the full β-function (β ≡ ∂tα), with α reasonably

small for perturbation theory to be applicable. The linear term relates to the tree level

contribution, reflecting that the underlying coupling is dimensionful with mass dimension

−A. The quadratic term stands for the one loop contribution. Evidently, the flow displays

two types of fixed points, a trivial one at α∗ = 0, and a non-trivial one at

α∗ = A/B . (2.2)

In the spirit of perturbation theory, the non-trivial fixed point (2.2) is accessible in the

domain of validity of the RG flow (2.1) as long as α∗ ≪ 1. This can be achieved in two

manners, either by having A≪ 1 at fixed B, or by making 1/B ≪ 1 at fixed A. (Below, we

discuss examples where both of these options are realised.) Integrating (2.1) in the vicinity

of the fixed point, one finds that small deviations from it scale as

δα = (α− α∗) ∝
(

µ

Λc

)ϑ

, (2.3)

thereby relating the characteristic energy scale Λc of the theory to the deviation from the

fixed point δα at the RG scale µ and a universal number ϑ. The role of Λc here is similar

to that of ΛQCD in QCD as it describes the cross-over between two different scaling regimes

of the theory. The universal scaling index ϑ arises as the eigenvalue of the one-dimensional

‘stability matrix’

ϑ =
∂β

∂α

∣

∣

∣

∣

∗

. (2.4)
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It is given by ϑ = −A at the non-trivial fixed point (2.2), and by ϑ = A at the Gaussian fixed

point.1 We have that ϑ < 0 at the non-trivial fixed point provided A > 0. Consequently,

small deviations from the fixed point (2.3) decrease with increasing RG momentum scale

meaning that (2.2) is an UV fixed point. If, additionally, B > 0, the fixed point obeys

α∗ > 0. Consequently, in this case the Gaussian fixed point of the model (2.1) becomes

an infrared (IR) fixed point. Unlike for asymptotically free theories where the RG running

close to a trival UV fixed point is logarithmically slow, the RG running close to a non-

trivial fixed point is power-like, and thus much faster. We notice that for A = 0 the

model (2.1) displays a doubly-degenerate Gaussian fixed point. In this light, as soon as the

canonical mass dimension of the underlying coupling becomes negative, A > 0, such as in

theories which are power-counting non-renormalisable, the degeneracy of the perturbative

β-function is lifted leading to a pair of non-degenerate fixed points. Provided that α is

the sole relevant coupling of the model under consideration, the existence of an interacting

UV fixed point can be used to define the theory fundamentally. This are the bare bones of

asymptotic safety [1, 2, 6].

2.2 Gravitons

We now recall specific examples for asymptotically safe quantum field theories where

the mechanism just described is at work. We start with Einstein gravity with action

(16πGN )−1
∫ √

det gR in D dimensions. Newton’s coupling GN has canonical mass dimen-

sion [GN ] = 2−D and the theory is power-counting non-renormalisable above its critical

dimension Dc = 2. In units of the RG scale, the dimensionless gravitational coupling of

the model reads

α = GN (µ)µD−2 . (2.5)

In D = Dc + ǫ dimensions, one finds the RG flow (2.1) with A = ǫ ≪ 1, B = 50/3, and

an UV fixed point (2.2) in the perturbative regime by analytical continuation of space-

time dimensionality [6, 55, 56, 71]. Results have been extended to two-loop order, also

including a cosmological constant [72]. It is the sign of B > 0 which enables an interacting

UV fixed point for gravity in the perturbative domain. Much of the recent motivation to

revisit asymptotic safety for gravity in four dimensions derives from this result close to

two dimensions [7–13]. Advanced non-perturbative studies predict a gravitational fixed

point (2.5) of order unity [54], see also [73–79].

2.3 Fermions

Next we consider a purely fermionic theory of NF selfcoupled massless Dirac fermions with,

examplarily, Gross-Neveu-type selfinteraction 1

2
gGN(ψ̄ψ)

2, [80]. The quartic fermionic self-

coupling gGN has canonical mass dimension [gGN] = 2−D and the model is perturbatively

non-renormalisable above its critical dimension Dc = 2. The dimensionless coupling reads

α =
gGN(µ)

2πNF
µ2−D . (2.6)

1The leading exponent ϑ is related to the exponent ν in the statistical physics literature as ν = −1/ϑ.
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Close to two dimensions the β-function (2.1) for (2.6) can be computed within the ǫ-

expansion by setting D = Dc + ǫ. The coefficient A, given by minus the canonical mass

dimension, becomes A = ǫ≪ 1, while the coefficient B > 0, to leading order in ǫ, is of order

one and given by the 1-loop coefficient in the two-dimensional theory. Hence, the model has

a reliable UV fixed point (2.2) in the perturbative regime. Its renormalisability has been

established more rigorously in [58, 59] with the help of the non-perturbative renormalisa-

tion group. Similarly, in the large-NF limit and at fixed dimension D = 3, one finds that

A ∝ 1/NF ≪ 1 while the coefficient B > 0 remains of order unity, leading to the same con-

clusion [64]. UV fixed points of four-fermion theories have been studied non-perturbatively

in the continuum and on the lattice, e.g. [81–83]. For a simple example, see [84].

2.4 Gluons

Next, we consider pure SU(NC) Yang-Mills theory with NC colors in D = 4 + ǫ dimen-

sions, with action ∼ 1/(g2YM)
∫

TrFµνF
µν . The canonical mass dimension of the coupling

reads [g2YM] = 4−D and the theory is perturbatively non-renormalisable above its critical

dimension Dc = 4. Introducing the running dimensionless strong coupling as

α =
g2YMNC

(4π)2
µD−4 , (2.7)

one may derive its β-function (2.1) to leading order in the ǫ-expansion, ǫ = D − Dc.

Again, one finds that A = ǫ ≪ 1 and B > 0 of order unity, thus leading to an UV fixed

point (2.2) [57]. The expansion has been extended up to fourth order in ǫ [16] suggest-

ing that this fixed point persists in D = 5, in accord with a prediction using functional

renormalisation [85].

2.5 Scalars

Finally we turn to self-interacting scalar fields. For scalar field theory with linearly realised

O(N) symmetry, the dimensionless version of its quartic self-coupling is given by

α =
λN

(4π)2
µD−4 . (2.8)

The critical dimension of these models is Dc = 4. Within the ǫ-expansion away from

the critical dimension, using D = 4 − ǫ, the one loop β-function is of the form (2.1)

with A = −ǫ < 0 and B < 0. Therefore, the fixed point (2.2) is physical below the

critical dimension, and it is an infrared one, i.e. the seminal Wilson-Fisher fixed point. For

the physically relevant dimension D = 3, its existence has been confirmed even beyond

perturbation theory [86, 87]. In this light, the Wilson-Fisher fixed point can be viewed

as the infrared analogue of asymptotic safety. The search for interacting UV fixed points

in D > 4 dimensions within perturbation theory has seen renewed interest recently [88].

Functional renormalisation suggests the absence of global fixed points [89], in accord with

the qualitative picture obtained here.

In non-linear σ-models, i.e. scalar theories with non-linearly realised internal symme-

try, the critical dimension is reduced to Dc = 2. The relevant coupling then displays an

– 6 –
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UV fixed point within perturbation theory [90, 91]. Fixed points of non-linear σ-models

have also been investigated for their similarity with gravity [92]. Lattice results for an in-

teracting UV fixed point in D = 3 in accord with functional renormalisation have recently

been reported in [93].

3 From asymptotic freedom to asymptotic safety

In this section, we explain the perturbative origin for asymptotic safety in a class of gauge-

Yukawa theories in strictly four dimensions.

3.1 Gauge-Yukawa theory

We consider a theory with SU(NC) gauge fields A
a
µ and field strength F a

µν (a = 1, · · · , N2
C−

1), NF flavors of fermions Qi (i = 1, · · · , NF ) in the fundamental representation, and a

NF × NF complex matrix scalar field H uncharged under the gauge group. The fun-

damental action is taken to be the sum of the Yang-Mills action, the fermion kinetic

terms, the Yukawa coupling, and the scalar kinetic and self-interaction Lagrangean L =

LYM + LF + LY + LH + LU + LV , with

LYM = −1

2
TrFµνFµν (3.1)

LF = Tr
(

Qi /DQ
)

(3.2)

LY = yTr
(

QLHQR +QRH
†QL

)

(3.3)

LH = Tr (∂µH
† ∂µH) (3.4)

LU = −uTr (H†H)2 (3.5)

LV = −v (TrH†H)2 . (3.6)

Tr is the trace over both color and flavor indices, and the decomposition Q = QL + QR

with QL/R = 1
2(1± γ5)Q is understood. This theory has been investigated for its interest-

ing properties in [65–68]. We will motivate it for our purposes while we progress. In four

dimensions, the model has four classically marginal coupling constants given by the gauge

coupling, the Yukawa coupling y, the quartic scalar couplings u and the ‘double-trace’

scalar coupling v, which we write as

αg =
g2NC

(4π)2
, αy =

y2NC

(4π)2
, αh =

uNF

(4π)2
, αv =

v N2
F

(4π)2
. (3.7)

We have normalized the couplings with the appropriate powers of NC and NF preparing

for the Veneziano limit to be considered below. Notice the additional power of NF in the

definition of the scalar double-trace coupling, meaning that v/u becomes αv/(αhNF ). We

also use the shorthand notation βi ≡ ∂tαi with i = (g, y, h, v) to indicate the β-functions

for the couplings (3.7). To obtain explicit expressions for these, we use the results [94–96].

– 7 –
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3.2 Leading order

We begin our reasoning with the RG flow for the gauge coupling to one-loop order using

the SU(NC) Yang-Mills Lagrangean (3.1) coupled to NF fermions (3.2) in the fundamental

representation,

βg = ∂t αg = −B α2
g . (3.8)

Note that a linear term Aαg is absent, unlike in (2.1), as we strictly stick to four dimensions.

To this order the gauge β-function (3.8) displays a doubly-degenerated fixed point at

α∗
g = 0 (3.9)

which is an UV fixed point for positive B. Provided that the coefficient B is numerically

very small, |B| ≪ 1, however, we also have that ∂t αg ≪ 1 close to the Gaussian fixed

point, indicating that the theory might develop a non-trivial fixed point with

0 < α∗
g ≪ 1 (3.10)

once higher loop terms are included. For B > 0, (3.9) corresponds to asymptotic freedom,

in which case (3.10) would then correspond to a conformal infrared fixed point.2 In turn,

for B < 0 asymptotic freedom is lost, the Gaussian fixed point becomes an IR fixed point,

and the theory may become asymptotically safe perturbatively at (3.10). In our setup, the

one-loop coefficient B depends on both NC and NF . Explicitly, B = − 4

3
ǫ, where

ǫ =
NF

NC
− 11

2
. (3.11)

For ǫ > 0, asymptotic freedom of the gauge sector is lost. The prerequisition for an

asymptotically safe fixed point within the perturbative regime thus translates into

0 ≤ ǫ≪ 1 . (3.12)

Consequently, to achieve asymptotic safety in the gauge sector in a controlled perturbative

manner, we must perform a Veneziano limit by sending both NC and NF to infinity, but

keeping their ratio NF /NC fixed [69]. The parameter (3.11) thereby becomes continuous

and can take any real value including (3.12). In most of the paper, the parameter ǫ will be

our primary perturbative control parameter in the regime (3.12), except in section 5 where

we also discuss the regime where ǫ becomes large.

3.3 Next-to-leading order

We now must check whether this scenario can be realized upon the inclusion of higher loop

corrections. At the next-to-leading (NLO) order in perturbation theory, which is two-loop,

the RG flow for the gauge coupling takes the form

∂t αg = −B α2
g + C α3

g . (3.13)

2There is a vast body of work dealing with the availability of this Banks-Zaks type IR fixed point [70, 97]

in the continuum and on the lattice (for recent overviews see [98, 99] and references therein).
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Figure 2. The coordinates of the UV fixed point as a function of ǫ at NLO (dashed) and NNLO

(full and short-dashed lines). Gauge, Yukawa and scalar couplings are additionally shown in red,

magenta and blue, respectively. NNLO corrections lead to a mild enhancement of the gauge and

Yukawa couplings over their NLO values. The scalar and Yukawa fixed point couplings are nearly

degenerate at NNLO.

As such, the gauge β-function (3.13) may display three fixed points, a doubly-degenerated

one at α∗
g = 0, and a non-trivial one at

α∗
g = B/C . (3.14)

The non-trivial fixed point is perturbative as long as 0 ≤ α∗
g ≪ 1 along with all the other

possible couplings in the theory. In practice, this follows provided that |B| ≪ 1 and C

of order unity, and B/C > 0. For this fixed point to be an asymptotically safe one we

must have B < 0 and C < 0. However, in the absence of Yukawa interactions one finds

C = 25 [97] to leading order in ǫ. Consequently, the would-be fixed point (3.14) resides in

the unphysical domain α∗
g < 0 where the theory is sick non-perturbatively, see e.g. [100].

This conclusion changes as soon as Yukawa interactions are taken into consideration.

The gauge β-function depends on the Yukawa coupling starting from the two-loop or-

der. For this reason, to progress, we must first evaluate the impact of non-trivial Yukawa

couplings. At the same time, since the fixed point for the gauge coupling depends on the

Yukawa coupling, we must retain its RG flow to its first non-trivial order, which is one-loop.

Having introduced Yukawa couplings means that we also have dynamical scalars, (3.3). The

simplest choice here is to assume that the scalars are uncharged under the gauge group,

whence (3.4). Then neither the gauge nor the Yukawa RG flows depend on the scalar

couplings at this order and we can neglect their contribution for now. This ordering of

perturbation theory for the different couplings is also favored by considerations related to

Weyl consistency conditions (see section 4.2). Hence, following this reasoning and in the

– 9 –
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presence of the Yukawa term (3.3), we end up with

βg = α2
g

{

4

3
ǫ+

(

25 +
26

3
ǫ

)

αg − 2

(

11

2
+ ǫ

)2

αy

}

,

βy = αy

{

(13 + 2ǫ)αy − 6αg

}

.

(3.15)

The coupled system (3.15) admits three types of fixed points within perturbation the-

ory (3.12). The system still displays a Gaussian fixed point

(α∗
g, α

∗
h) = (0, 0) (3.16)

irrespective of the sign of ǫ. For ǫ > 0, neither the gauge coupling nor the Yukawa coupling

are asymptotically free at this fixed point. Ultimately, this is related to the sign of either

β-function being positive arbitrarily close to (3.16), making it an IR fixed point. A second,

non-trivial fixed point is found as well, (α∗
g, α

∗
h) 6= (0, 0) which is an UV fixed point with

coordinates

α∗
g =

26ǫ+ 4ǫ2

57− 46ǫ− 8ǫ2
=

26

57
ǫ+

1424

3249
ǫ2 +

77360

185193
ǫ3 +O(ǫ4)

α∗
y =

12ǫ

57− 46ǫ− 8ǫ2
=

4

19
ǫ+

184

1083
ǫ2 +

10288

61731
ǫ3 +O(ǫ4) .

(3.17)

Numerically, the series (3.17) reads

α∗
g = 0.4561 ǫ+ 0.4383 ǫ2 + 0.4177 ǫ3 +O(ǫ4)

α∗
y = 0.2105 ǫ+ 0.1699 ǫ2 + 0.1667 ǫ3 +O(ǫ4)

(3.18)

This UV fixed point is physically acceptable in the sense that (α∗
g, α

∗
y) > (0, 0) for ǫ > 0.

It arises because the gauge and Yukawa couplings contribute with opposite signs to βg at

the two-loop level, allowing for an asymptotically safe fixed point in the physical domain.

As an aside, we also notice the existence of a second interacting fixed point within

perturbation theory located at

(α∗
g, α

∗
y) =

(

− 4ǫ

75 + 26ǫ
, 0

)

. (3.19)

For ǫ > 0 this fixed point cannot be reached by any finite RG flow starting from the

domain where αg > 0 and is unphysical. For ǫ < 0, (3.19) takes the role of an interacting

infrared fixed point à la Caswell, Banks and Zaks [70, 97]. Interacting IR fixed points play

an important role in extensions of the standard model with a strongly interacting gauge

sector and models with a composite Higgs (see [98, 99] and references therein). The IR fixed

point arises even in the absence of scalar fields, whereas the UV fixed point necessitates

scalar matter with non-vanishing Yukawa interactions. We conclude that the IR fixed

point (3.19) is profoundly different from the UV fixed point (3.17).

Returning to our main line of reasoning, we linearize the RG flow in the vicinity of its

UV fixed point (3.17),

βi =
∑

j

Mij (αj − α∗
j ) + subleading (3.20)
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Figure 3. Components of the eigenvectors (3.23) and (3.37) (absolute values) corresponding to the

relevant eigenvalue ϑ1 at the UV fixed point at NLO (dashed) and NNLO (full lines), respectively,

as functions of ǫ. From top to bottom, the gauge, Yukawa and scalar, and double-trace scalar

components are shown. Notice that the relevant eigendirection is largely dominated by the gauge

coupling. Each component varies only mildly with ǫ.

where i = (g, y) and Mij = ∂βi/∂αj |∗ denotes the stability matrix. The eigenvalues of M

are universal numbers and characterise the scaling of couplings in the vicinity of the fixed

point. They can be found analytically. The first few orders in (3.11) are

ϑ1 = −104

171
ǫ2 +

2296

3249
ǫ3 +

1387768

1666737
ǫ4 +O(ǫ4)

ϑ2 =
52

19
ǫ+

9140

1083
ǫ2 +

2518432

185193
ǫ3 +O(ǫ4) .

(3.21)

Numerically, the eigenvalues (3.21) read

ϑ1 = −0.608 ǫ2 + 0.707 ǫ3 − 0.833 ǫ4 +O(ǫ5)

ϑ2 = 2.737 ǫ+ 8.44 ǫ2 + 13.599 ǫ3 +O(ǫ4)
(3.22)

A few comments are in order. Firstly, the gauge-Yukawa system at NLO has developed a

relevant and an irrelevant eigendirection with eigenvalues ϑ1 < 0 and ϑ2 > 0, respectively.3

Secondly, the relevant eigenvalue ϑ1 is found to be of order ǫ2, whereas the irrelevant

one is of order ǫ and thus parametrically larger. This is not a coincidence, and its origin can

be understood as follows: all couplings settle at values of order ǫ at the fixed point. Hence,

βg ∼ ǫ3 and βy ∼ ǫ2 in the vicinity of the fixed point. The relevant eigenvalue originates

primarily from the gauge sector, because asymptotic freedom is destabilised due to (3.12).

Consequently, at the fixed point, the relevant eigenvalue must scale as ϑ1 ∼ ∂βg/∂ǫ|∗ ∼ ǫ2.

Conversely, the irrelevant eigenvalue scales as ϑ2 ∼ ∂βy/∂ǫ|∗ ∼ ǫ. We conclude that the

parametric dependence ∼ ǫ2 of the relevant eigenvalue arises because the fixed point in the

3Strictly speaking, there are two further marginal eigenvalues ϑ3,4 = 0 related to the scalar selfinterac-

tions which we have taken as classical.
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gauge sector stems from a cancellation at two-loop level. Conversely, the behaviour ∼ ǫ of

the irrelevant eigenvalue stems from cancellations at the one-loop level. This feature is a

direct consequence of the vanishing mass dimension of the couplings. Asymptotic safety

then follows as a pure quantum effect rather than through the cancelation of tree-level and

one-loop terms.

Finally, introducing a basis in coupling parameter space as a = (αg, αy)
T , we denote

the relevant eigendirection at the UV fixed point as

e1 = (eg, ey)
T . (3.23)

The absolute values of its entries are shown in figure 3 (dashed lines). We find that the

relevant eigenvalue is largely dominated by the gauge coupling for all ǫ. Furthermore, the

relevant eigendirection is largely independent of ǫ, up to ǫ < 0.7 where couplings become

of order one. The domain of validity is further discussed in section 5.1 below.

3.4 Next-to-next-to-leading order

We now move on to the next-to-next-to-leading order (NNLO) in the perturbative expan-

sion where the scalar sector is no longer treated as exactly marginal. Identifying a combined

UV fixed point in all couplings becomes a consistency check for asymptotic safety in the

full theory. In practice, this amounts to adding the quartic selfinteraction terms (3.5)

and (3.6). The one-loop running of the quartic couplings given by

βh = −(11 + 2ǫ)α2
y + 4αh(αy + 2αh) , (3.24)

βv = 12α2
h + 4αv (αv + 4αh + αy) . (3.25)

For consistency, we also include the two-loop corrections to the running of the Yukawa

coupling and the three-loop contributions to the running of the gauge coupling,

∆β(2)y =αy

{

20ǫ−93

6
α2
g+(49+8ǫ)αgαy−

(

385

8
+
23

2
ǫ+

ǫ2

2

)

α2
y−(44+8ǫ)αyαh+4α2

h

}

∆β(3)g =α2
g

{(

701

6
+
53

3
ǫ− 112

27
ǫ2
)

α2
g−

27

8
(11+2ǫ)2αgαy+

1

4
(11+2ǫ)2(20+3ǫ)α2

y

}

.

(3.26)

Several comments are in order. Firstly, both scalar β functions are quadratic polynomials

in the couplings and display a Gaussian fixed point. The full system at NNLO then displays

a Gaussian fixed point (α∗
g, α

∗
y, α

∗
h, α

∗
v) = (0, 0, 0, 0) as it must.

Secondly, and unlike all other β-functions, the RG flow (3.25) for the double-trace cou-

pling shows no explicit dependence on ǫ. Also, to leading order in 1/NC and 1/NF , (3.25)

stays quadratic in its coupling to all loop orders [101].

Finally, and most notably, the β-functions of the gauge, Yukawa and single-trace scalar

coupling remain independent of the double-trace scalar coupling αv. In consequence the

dynamics of αv largely decouples from the system and it acts like a spectator without influ-

encing the build-up of the asymptotically safe UV fixed point in the gauge-Yukawa-scalar

subsector. Its own RG evolution is primarily fueled by the Yukawa and the single trace cou-

pling, and as such indirectly sensitive to the gauge-Yukawa fixed point. In turn, the scalar

coupling αh couples back into the Yukawa coupling, though not into the gauge coupling.
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Since the RG flows at NNLO partly factorize, we can start by first considering the

corrections to (3.17) induced by the scalar coupling αh. This leads to UV fixed points in

the gauge-Yukawa-scalar subsystem

(α∗
g, α

∗
y, α

∗
h) 6= (0, 0, 0) . (3.27)

In the background of the gauge-Yukawa fixed point (3.17), the RG flow (3.24) for αh admits

two fixed points α∗
h2 < 0 < α∗

h1, with

α∗
h1,h2 = (±

√
23− 1)

ǫ

19
+O(ǫ2) , (3.28)

irrespective of αv. Inserting α∗
h1 together with (3.17) into (3.25) we then also find two

solutions for the double trace coupling, with α∗
v2 < α∗

v1. These are discussed in more detail

below. Conversely, inserting α∗
h2 together with (3.17) into (3.25) does not offer a fixed point

for αv. We conclude that the fixed point α∗
h ≡ α∗

h1 > 0 is the sole value for the coupling αh

which leads to a UV fixed point in the scalar subsystem. We return to this in section 3.5.

Using (3.15), (3.24), and (3.26), the coordinates of the gauge, Yukawa and scalar

coupling are obtained analytically and can be expressed as a power series in ǫ starting as

α∗
g =

26

57
ǫ+

23(75245− 13068
√
23)

370386
ǫ2 +O(ǫ3)

α∗
y =

4

19
ǫ+

(

43549

20577
− 2300

√
23

6859

)

ǫ2 +O(ǫ3)

α∗
h =

√
23− 1

19
ǫ+

1168991− 202249
√
23

82308
√
23

ǫ2 +O(ǫ3) .

(3.29)

Numerically, the first few orders in the ǫ-expansion read

α∗
g = 0.4561 ǫ+ 0.7808 ǫ2 + 3.112 ǫ3 +O(ǫ4)

α∗
y = 0.2105 ǫ+ 0.5082 ǫ2 + 2.100 ǫ3 +O(ǫ4)

α∗
h = 0.1998 ǫ+ 0.5042 ǫ2 + 2.045 ǫ3 +O(ǫ4) .

(3.30)

The addition of the scalar selfcouplings has led to a physical fixed point α∗
h > 0 of order ǫ.

NNLO corrections to α∗
g and α∗

y arise only starting at order ǫ2 without altering the NLO

fixed point (3.17). Performing the expansion (3.30) to high orders in ǫ one finds its radius

of convergence as

ǫ ≤ ǫmax = 0.117 · · · (3.31)

At ǫmax in (3.31), the NNLO equations display a bifurcation and the UV fixed point ceases

to exist through a merger with a non-perturbative IR fixed point, and the relevant eigen-

value disappears at ǫmax. The merger at ǫmax indicates that our working assumption (3.12)

should be superseeded by 0 < ǫ≪ ǫmax.

Since αv does not contribute to the RG flow of the subsystem (αg, αy, αh), the com-

putation of scaling exponents equally factorizes. Linearizing the RG flow in the vicinity
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Figure 4. Universal eigenvalues ϑ1 < 0 < ϑ2 < ϑ3 at the UV fixed point at NLO (dashed lines) and

NNLO (full lines) as function of ǫ (3.11). For all technical purposes, the eigenvalues are dominated

by the NLO values except for the close vicinity of ǫ ≈ ǫmax.

of the fixed point, we have (3.20) where now i = (g, y, h). The eigenvalues ϑn are found

analytically as a power series in ǫ, the first few orders of which are given by

ϑ1 = −104

171
ǫ2 +

2296

3249
ǫ3 +

4531558295989− 922557832416
√
23

46931980446
ǫ4 +O(ǫ5)

ϑ2 =
52

19
ǫ+

136601719− 22783308
√
23

4094823
ǫ2 +O(ǫ3)

ϑ3 =
16
√
23

19
ǫ+ 4

217933589
√
23− 695493228

94180929
ǫ2 +O(ǫ3)

(3.32)

For the relevant eigenvalue, we notice that the first two non-trivial orders have remained

unchanged. Numerically, the eigenvalues read

ϑ1 = −0.608 ǫ2 + 0.707 ǫ3 + 2.283 ǫ4 + · · ·
ϑ2 = 2.737 ǫ + 6.676 ǫ2 + · · ·
ϑ3 = 4.039 ǫ + 14.851 ǫ2 + · · · .

(3.33)

The cubic and quartic corrections to the relevant eigenvalue both arise with a sign opposite

to the leading term, which is responsible for the smallness of ϑ1 even for moderate values

of ǫ. In turn, the irrelevant eigenvalues receive larger corrections and reach values of the

order of 0.1÷ 1 for moderate ǫ.

We now discuss the role of the double-trace scalar coupling αv. Its fixed points are

entirely induced by the fixed point in the gauge-Yukawa-scalar subsystem (3.29). Two

solutions are found,

α∗
v1,v2 = − 1

19

(

2
√
23∓

√

20 + 6
√
23

)

ǫ+O(ǫ2) (3.34)

Numerically α∗
v1 = −0.1373 ǫ and α∗

v2 = −0.8723 ǫ, up to quadratic corrections in ǫ. In

principle, either of these fixed points can be used in conjunction with (3.29) to define the
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combined UV fixed point of the theory. We also note that

α∗
h1 + α∗

v2 < 0 < α∗
h1 + α∗

v1 , (3.35)

showing that the scalar field potential is bounded (unbounded) from below for the latter

(former) choice of couplings.4 At the fixed point α∗
v1, the invariant (3.6) becomes pertur-

batively irrelevant and adds a positive scaling exponent to the spectrum. Conversely, at

the fixed point α∗
v2, the invariant (3.6) has become perturbatively relevant. Since the RG

flow (3.25) is quadratic in the coupling αv to all orders, the corresponding scaling exponents

are equal in magnitude with opposite signs,

ϑ4 =
8 ǫ

19

√

20 + 6
√
23 +O(ǫ2) . (3.36)

Numerically, ϑ4 = 2.941 ǫ + O(ǫ2). The occurence of an additional negative eigenvalue is

induced by the interacting UV fixed point (3.29).

We may introduce a basis in coupling parameter space as a = (αg, αy, αh, αv)
T to

denote the eigendirections at the UV fixed point as ei. They obey the eigenvalue equation

Mei = ϑi ei. The normalised relevant eigendirection e1 corresponding to the UV attractive

eigenvalue has the components

e1 = (eg, ey, eh, ev)
T (3.37)

whose values as function of (3.11) are shown in figure 3. Clearly, even at NNLO the gauge

coupling dominates the relevant eigendirection. We also find that the eigendirection corre-

sponding to ϑ4 is independent of the gauge, Yukawa and scalar coupling, e4 = (0, 0, 0, 1).

3.5 UV scaling and Landau pole

We summarize the main picture (see also table 1). The asymptotically safe UV fixed

point (3.17) in the gauge-Yukawa system bifurcates into several fixed points once the scalar

fluctuations are taken into account. In addition to the universal eigenvalues of the gauge-

Yukawa system ϑ1 and ϑ2, the scalar sector add the eigenvalues ±ϑ3 and ±ϑ4. To the

leading non-trivial order in ǫ, these are

ϑ1 = −0.608 ǫ2 +O(ǫ3)

ϑ2 = 2.737 ǫ+O(ǫ2)

ϑ3 = 4.039 ǫ+O(ǫ2)

ϑ4 = 2.941 ǫ+O(ǫ2) .

(3.38)

Complete asymptotic safety, e.g. asymptotically safe UV fixed points in all couplings, is

achieved at two UV fixed points, FP1 and FP2. At FP1, both scalar invariants are pertur-

batively irrelevant and the eigenvalue spectrum is

ϑ1 < 0 < ϑ2 < ϑ4 < ϑ3 . (3.39)

4An inspection of radiative corrections confirms that the effective potential for the scalar fields is stable

classically and quantum-mechanically [102].
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fixed point
couplings eigenvalues

gauge Yukawa scalar double-trace relevant irrelevant

FP1 α∗
g α∗

y α∗
h1 α∗

v1 ϑ1 ϑ2, ϑ3, ϑ4

FP2 α∗
g α∗

y α∗
h1 α∗

v2 −ϑ4, ϑ1 ϑ2, ϑ3

FP3 α∗
g α∗

y α∗
h2 Landau pole −ϑ3, ϑ1 ϑ2

Table 1. Summary of UV fixed points of the gauge-Yukawa theory and the number of (ir-)relevant

eigenvalues. To leading non-trivial order, the fixed point values are given by (3.17), (3.28), (3.34)

and the exponents by (3.38).

At FP2, the partly decoupled double-trace scalar interaction term with coupling αv becomes

relevant in its own right, and the eigenvalue spectrum, instead, reads

− ϑ4 < ϑ1 < 0 < ϑ2 < ϑ3 . (3.40)

At either of these, the UV limit can be taken. We recall that the scalar field potential is sta-

ble (unstable) at FP1 (FP2), indicating that FP1 corresponds to a physically acceptable the-

ory at highest energies. Finally, a fixed point FP3 exists for the gauge-Yukawa-scalar sub-

system. Here, the scalar coupling αh becomes relevant and the eigenvalue spectrum reads

− ϑ3 < ϑ1 < 0 < ϑ2 . (3.41)

Here, however, asymptotic safety is not complete. In fact, the β-function for the double-

trace scalar coupling does not show a fixed point in perturbation theory as it remains

strictly positive, leading to Landau poles αv → ±∞ in the IR and in the UV. In the UV,

this regime resembles the U(1) or Higgs sector of the standard model. In either case it is no

longer under perturbative control. Unless strong-coupling effects resolve this singularity in

the UV, this behaviour implies a limit of maximal UV extension of the model close to FP3.

3.6 UV critical surface

The existence of relevant and irrelevant direction in the UV implies that the short-distance

behaviour of the theory is described by a lower-dimensional UV critical surface. We discuss

the NLO case and FP1 at NNLO in detail. This is straightforwardly generalised to the case

with two relevant eigendirections. On the critical surface in coupling constant space, we

may express the RG running of the irrelevant coupling, say αi with (i = y, h, v), in terms

of the relevat one, say αg, leading to relations

αi = Fi(αg) . (3.42)

To see this more explicitly, we integrate the RG flow in the vicinity of the UV fixed point

to find the general solution

αi(µ) = α∗
i +

∑

n

cn V
n
i

(

µ

Λc

)ϑn

+ subleading . (3.43)
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Here, Λc is a reference energy scale, ϑn are the eigenvalues of the stability matrix M , V n

the corresponding eigenvectors, and cn free parameters. The eigenvectors generically mix

all couplings. At NLO the eigenvalues obey ϑ1 < 0 < ϑ2. For all coupling αi to reach the

UV fixed point with increasing RG scale 1/µ→ 0 we therefore must set the free parameter

c2 = 0. Conversely, the parameter c1 remains undetermined and should be viewed as a free

parameter of the theory. Since this holds true for each coupling αi, we can eliminate c1
from (3.43) to express the irrelevant coupling in terms of the relevant one. At NLO, one

finds

Fy(αg) =

(

6

13
− 88ǫ

507

)

αg +
8

171
ǫ2 +O(ǫ3) (3.44)

to the first few orders in an expansion in ǫ. At NNLO, the hypercritical surface is extended

and receives corrections due to the scalar couplings. At FP1, for example, one finds

Fy(αg) = (0.4615 + 0.6168 ǫ)αg − 0.1335 ǫ2 +O(ǫ3)

Fh(αg) = (0.4380 + 0.5675 ǫ)αg − 0.09658 ǫ2 +O(ǫ3) ,

Fv(αg) = −(0.3009 + 0.3241 ǫ)αg + 0.1373 ǫ+ 0.3828 ǫ2 +O(ǫ3)

(3.45)

to the first few orders in ǫ, and in agreement with (3.44) to order ǫ. The significance of

the UV critical surface is that couplings can reach the UV fixed point only along the rel-

evant direction, dictated by the eigenperturbations. This imposes a relation between the

relevant and the irrelevant coupling, both of which scale out of the fixed point with the

same scaling exponent ϑ1. On the critical surface and close to the fixed point, the gauge

coupling evolves as

αg(µ) = α∗
g +

(

αg(Λc)− α∗
g

)

(

µ

Λc

)ϑ1(ǫ)

(3.46)

and the irrelevant couplings follow suit via (3.42) with (3.44) and (3.45), and with α∗
g and

ϑ1 given by the corresponding expressions at NLO and NNLO, respectively.

3.7 Phase diagram

In figure 1, we show the phase diagram of the asymptotically safe gauge-Yukawa theory for

small couplings at NLO, where we have set ǫ = 0.05. The RG trajectories are obtained from

integrating (3.15) with arrows pointing towards the IR. For small couplings, one observes

the Gaussian and the UV fixed points. At vanishing Yukawa (gauge) coupling, the RG

equations (3.15) become infrared free in the gauge (Yukawa) coupling, corresponding to

the thick red horizontal (vertical) trajectory in figure 1. This makes the Gaussian fixed

point IR attractive in both couplings. The UV fixed point has a relevant and an irrelevant

direction, corresponding to the two thick red trajectories one of which is flowing out of and

the other into the UV fixed point. These trajectories are distinguished in that they also

divide the phase diagram into four regions A,B,C and D.

The trajectory connecting the UV with the Gaussian fixed point is a separatrix, which

defines the boundary between the regions A and C, and B and D. Close to the UV fixed

point, its coordinates are given by the UV critical surface (3.44). The RG flow along the

separatrix is given analytically to very good accuracy by (3.46) and (3.44), and for suitable
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Figure 5. The gauge and Yukawa β-functions projected along the separatrix of the phase diagram

given in figure 1 (NLO with ǫ = 0.05), also showing the Gaussian and the UV fixed point. For

better display, we have rescaled β → β/(α∗

g)
3, and αg → αg/α

∗

g; see main text.

initial conditions αg(µ = Λc) on the separatrix. Note that due to the smallness of the

relevant UV eigenvalue compared to the irrelevant one, |ϑ1/ϑ2| = 2
9ǫ+O(ǫ2), the RG flow

runs very slowly along the separatrix. In turn, trajectories entering into the separatrix

(with decreasing RG scale µ) run much faster, reflected by their near-perpendicular angle

between these trajectories and the separatrix; see figure 1.

Trajectories in region A run towards the Gaussian FP in the IR, and towards strong

Yukawa coupling in the UV. Trajectories in B run towards a strong coupling regime in

the IR. In region C, trajectories approach the Gaussian FP in the IR limit. Finally, in

region D trajectories approach a strongly coupled regime in the IR, outside the domain

of applicability of our equations. Notice that the Gaussian fixed point is attractive in

all directions. Hence, asymptotically safe trajectories emanating from the UV fixed point

either run towards a weakly coupled phase controlled by the Gaussian fixed point in the

deep IR, or towards a strongly coupled QCD-like phase characterised by chiral symmetry

breaking and confinement. More generally, in figure 1, the boundary between weakly (A

and C) and strongly (B and D) coupled phases at low energies is given by the UV irrelevant

direction, i.e. the two full (red) trajectories running into the UV fixed point.

In figure 5 , we show the gauge and Yukawa β-functions projected along the separatrix

as functions of the gauge coupling,

βsepg (αg) ≡ βg(αg, αy = Fy(αg))

βsepy (αg) ≡ βy(αg, αy = Fy(αg))
(3.47)

also using (3.42) with (3.44). Both of them display the Gaussian and the UV fixed point.

We also recover the UV relevant eigenvalue

ϑ1 =
dβsepi

dαg

∣

∣

∣

∗
=
∂βi
∂αg

∣

∣

∣

∗
+
∂Fy

∂αg

∂βi
∂αy

∣

∣

∣

∗
(3.48)
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from either of these (i = g, y). Close to the UV fixed point the RG running is power-

like. Close to the IR fixed point, the running becomes logarithmic. Quantitatively, along

the separatrix the crossover from UV scaling to IR scaling takes place once couplings are

reduced to about ∼ 65% of their UV fixed point values.

3.8 Mass terms and anomalous dimensions

If mass terms are present, their multiplicative renormalisation is induced through the RG

flow of the gauge, Yukawa, and scalar couplings. We now discuss the scaling associated to

the scalar wave function renormalization, the scalar mass, and the addition of the fermion

mass operator. The former is identified with the anomalous dimension γH for the scalar

wave function renormalization5 ZH ,

∆H = 1 + γH , γH ≡ −1

2

d lnZH

d lnµ
. (3.49)

Within perturbation theory, the one and two loop contributions to (3.49) read (see

e.g. [103])

γ
(1)
H = αy , (3.50)

γ
(2)
H = −3

2

(

11

2
+ ǫ

)

α2
y +

5

2
αyαg + 2α2

h . (3.51)

Inserting the UV fixed point FP1 and expanding the anomalous dimension in powers of ǫ,

we find

γH =
4ǫ

19
+

14567− 2376
√
23

6859
ǫ2 +O(ǫ3) . (3.52)

Notice that the leading and subleading terms are both positive. The anomalous dimension

for the scalar mass term m can be derived from the composite operator ∼ m2TrH†H.

Introducing γm = 1
2d lnm

2/d lnµ one finds the mass anomalous dimension

γ(1)m = 2αy + 4αh + 2αv (3.53)

to one-loop order. We find that (3.53) becomes as large as γ
(1)
m ≈ 0.09 for ǫ ≈ 0.1 at

FP1. Evidently, the loop corrections remain small compared to the tree level term leaving

m2 = 0 as the sole fixed point within perturbation theory. Analogously, the anomalous

dimension for the fermion mass operator is defined as

∆F = 3− γF , γF ≡ d lnM

d lnµ
(3.54)

where M stands for the fermion mass. Within perturbation theory, the one and two loop

contributions read

γ
(1)
F = 3αg − αy

(

11

2
+ ǫ

)

, (3.55)

γ
(2)
F = (44 + 8ǫ)αgαy +

(

31

4
− 5

3
ǫ

)

α2
g +

1

4

(

11

2
+ ǫ

)(

23

2
+ ǫ

)

α2
y . (3.56)

5The bare and renormalized fields here are related via HB = Z
1

2

HH. Also the wave function definition

in [95] is the inverse of the one here.
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Inserting the UV fixed point FP1 and expanding in ǫ we find

γF =
4ǫ

19
+

4048
√
23− 59711

6859
ǫ2 +O(ǫ3) . (3.57)

The leading and subleading terms are both positive. Interestingly, to one-loop order,

the scalar anomalous dimension and the fermion mass anomalous dimension coincide in

magnitude. The quantum corrections are bounded, |γ(1)H | < 1/40. We stress that the

leading order results are entirely fixed by the NLO fixed point (3.17), and insensitive to

the details of the scalar sector. The latter only enter starting at order ǫ2.

4 Consistency

In this section, we discuss aspects of consistency and the validity of results.

4.1 Stability

In the LO, NLO and NNLO approximations, we have retained the β-functions of the gauge,

Yukawa and quartic couplings at different loop levels within perturbation theory. As we

have argued, the ordering as shown in table 2 is dictated by the underlying dynamics

towards asymptotic safety, centrally controlled by the gauge coupling.

The selfconsistency of our reasoning is confirmed a posteriori by the stability of the

result. Firstly, the leading coefficients in ǫ of the NLO fixed point α∗
g and α

∗
y remain numer-

ically unchanged at NNLO, see (3.17) and (3.29). We therefore expect that all coefficients

up to ǫ2 of α∗
g and α∗

y and the ǫ coefficient of α∗
h and α∗

v in (3.29), (3.28) and (3.34) remain

unchanged beyond NNLO. Secondly, the stability also extends to the universal eigenvalues.

Interestingly, here, the first two non-trivial coefficients (up to order ǫ3) for the relevant

eigenvalue ϑ1 at NLO agree with the NNLO coefficients, see (3.21) and (3.32). For the

leading irrelevant eigenvalue ϑ2, this agreement holds for the leading (order ǫ) coefficient.

All couplings of the theory have become fully dynamical at NNLO. At N3LO in the

expansion, no new consistency conditions arise. Instead, higher loop corrections will lead to

higher order corrections in the results established thus far. Based the observations above,

we expect that all coefficients up to ǫ4 (ǫ2) [ǫ] of the universal eigenvalues ϑ1 (ϑ2) [ϑ3,4] at

NNLO in (3.32) are unaffected at N3LO and beyond.

4.2 Weyl consistency

At a more fundamental level an argument known as Weyl consistency conditions [104,

105] lends a formal derivation of this hierarchical procedure of table 2. Replacing the

couplings (3.7) by the set {gi} ≡ {g, y, u, v} with β functions βi = dgi/d lnµ, the Weyl

consistency condition
∂βj

∂gi
=
∂βi

∂gj
(4.1)

relates partial derivatives of the various β functions to each other, and βi ≡ χijβj . The

functions χij plays the role of a metric in the space of couplings. The relations are expected
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coupling order in perturbation theory

αg 1 2 3

αy 0 1 2

αh 0 0 1

αv 0 0 1

approximation level LO NLO NNLO

Table 2. Relation between approximation level and the loop order to which couplings are retained

in perturbation theory.

to hold in the full theory, and hence it is desirable to obey (4.1) even within finite approx-

imations. The crucial point here is that the metric itself is a function of the couplings.

Therefore, a consistent solution to (4.1) will generically relate different orders within a

näıve fixed-order perturbation theory. In [106] it was shown that these conditions hold for

the standard model. For the gauge-Yukawa theory studied here, the metric χ has been

given explicitly in [68] showing that the ordering laid out in table 2 is consistent with (4.1).

4.3 Universality

For our explicit computations we have used known RG equations in the MS-bar regularisa-

tion scheme. In general, the expansion coefficients of β-functions are non-universal numbers

and depend on the adopted scheme. On the other hand, it is well-known that one-loop

RG coefficients for couplings with vanishing mass dimension are scheme-independent and

universal. Furthermore, the two-loop gauge contribution to the gauge β-function is also

known to be universal, provided a mass-scale independent regularisation scheme is adopted.

Coefficients at higher loop order are strictly non-universal. The main new effect in our work

arises from the two-loop coefficients in the gauge sector, and from the interacting UV fixed

point in the Yukawa RG flow at one-loop (3.15). Expressing the Yukawa fixed point in

terms of the gauge coupling α∗
y = α∗

y(αg), one then shows that the fixed point in the gauge

sector is invariant to leading order in ǫ under perturbative (non-singular) reparametrisa-

tions αg → α′
g(αg), see (3.15). We therefore conclude that the interacting UV fixed point

arises universally, irrespective of the regularisation scheme.

4.4 Operator ordering

Unlike in asymptotically free theories, at an interacting UV fixed point it is not known be-

forehand which invariants will become relevant since canonical power counting cannot be

taken for granted [54]. For asymptotically safe theories with perturbatively small anoma-

lous dimensions and corrections-to-scaling, however, canonical power counting can again

be used to conclude that invariants with canonical mass dimension larger than four will

remain irrelevant at a perturbative UV fixed point. The reason for this is that corrections

to scaling, in the regime (3.12), are too small to change canonical scaling dimensions by an

integer, and hence cannot change irrelevant into relevant operators. If masses are switched-

on, two such operators are the fermion and scalar mass terms, both of which receive only
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Figure 6. The fourfold degeneracy of the classically marginal invariants (3.1), (3.3), (3.5) and (3.6)

— schematically indicated by a thick grey line (left panel) — is lifted by residual interactions in the

UV, 0 < ǫ (right panel). Also shown are the universal eigenvalues ϑ1 < 0 < ϑ2 < ϑ4 < ϑ3 (bottom

to top, respectively) of the fixed point FP1, and the interaction-induced gaps ∆ in the eigenvalue

spectrum at NNLO as functions of ǫ.

perturbatively small corrections at the fixed point. We conclude that the relevancy of

operators continues to be controlled by their canonical mass dimension [54].

On the other hand, residual interactions, even if perturbatively weak, control the scal-

ing of invariants which classically have a vanishing canonical mass dimension and can

change these into relevant or irrelevant ones, see figure 6. In our model, we find that the

operator ordering of the classically marginal invariants at the fixed point is reflected by our

search strategy, see table 2. At LO, the SU(NC) Yang-Mills Lagrangean (3.1) coupled toNF

fermions (3.2) is assumed to become a relevant operator in the regime (3.12) because asymp-

totic freedom is lost. This assumption is tested and confirmed at NLO against the inclusion

of Yukawa interactions (3.3). The eigenvalue ϑ1 is dominated by the gauge and ϑ2 domi-

nated by the Yukawa coupling. This is consistent with the initial assumption inasmuch as

the scaling of the Yukawa term provides a subleading correction to the scaling of the Yang-

Mills term. At NNLO, two quartic scalar selfinteractions are introduced whose non-trivial

fixed points add two eigenvalues to the spectrum. At FP1, both of these are irrelevant. At

FP2, the double trace scalar selfinteraction becomes relevant. The structure of the scalar

sector is induced by the fixed point in the gauge-Yukawa subsector. In general, for other

values of the gauge and Yukawa couplings, the scalar sector may not offer a fixed point at all.

4.5 Gap

Residual interactions at the UV fixed point have lifted the fourfold degeneracy amongst

the classically marginal couplings. In figure 6, we show the eigenvalues to leading order in

ǫ at the fixed point FP1, except for ϑ1 which is shown at order ǫ2. The difference between

the smallest negative and the smallest positive eigenvalue, which we denote as the gap of

the eigenvalue spectrum ∆, is then a good quantitative measure for the strength of residual

interactions. At the UV fixed point we have ∆ = ϑ2 − ϑ1. Quantitatively, the gap in the
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eigenvalue spectrum read

∆ =
52

19
ǫ+O(ǫ2) , (4.2)

where the (sub)leading term in ǫ arises from the (N)NLO approximation. Classically, we

have ∆ = 0. We notice that the leading and subleading term have the same sign, increasing

the gap with increasing ǫ. We stress that the gap in the eigenvalue spectrum is insensitive

to the details of the scalar sector and only determined by the gauge-Yukawa subsystem.

4.6 Unitarity

An important constraint on quantum corrections relates to the scaling dimension of pri-

mary fields such as scalar fields themselves. For a quantum theory to be compatible with

unitarity, it is required that the scaling dimension must be larger than unity, ∆H > 1. This

behaviour can be observed in the result. To leading order in ǫ, γH is negative and hence

∆H > 1. At NNLO, we observe cancellations in (3.51) ensuring that γH remains negative.

Overall, fluctuation-induced corrections reach values of up to 5% for moderate ǫ.

For the composite scalar operator δijQ̄iQj , the leading order corrections in ǫ decrease

its scaling dimension ∆F below its classical value ∆F = 3, see (3.54). This is further de-

creased at NNLO where all corrections to ∆F have the same sign and no cancellations occur.

The NNLO corrections are thus stronger than those for ∆H . Here, corrections push ∆F

down from its classical value by up to 10%, leaving ∆F > 1. We conclude that the effects of

residual interactions are compatible with basic constraints on the scaling of scalar operators.

4.7 Triviality

Triviality bounds often arise when infrared free interactions display a perturbative Landau

pole towards high energies, limiting the predictivity of the theory to the scale of maximal

UV extension [5]. On a more fundamental level, triviality relates to the difficulty of defining

a self-interacting scalar quantum field in four dimensions [60, 107–109], which also puts the

existence of elementary scalars into question. In the standard model, the scalar and the

U(1) sectors are infrared free. At the UV fixed points detected here, triviality for all three

types of fields is evaded through residual interactions. This also indicates that the scalar

degrees of freedom may indeed be taken as elementary.

Moreover, we also observe that the avoidance of triviality in the scalar sector is closely

linked to the presence of gauge fields, be they asymptotically free or asymptotically safe.

In fact, an interacting fixed point in the scalar sector would not arise without an interact-

ing fixed point for the Yukawa coupling, see (3.24), (3.25). Furthermore, without gauge

fields, the fermion-boson subsystem does not generate an interacting UV fixed point, and

couplings cannot reach the Gaussian fixed point in the UV. With asymptotically free gauge

fields (say, for small ǫ < 0), the UV fixed point for the Yukawa coupling remains the trivial

one, see (3.15), (3.26). A detailed inspection then shows that complete asymptotic freedom

follows, albeit under certain constraints on the parameters [110]. With asymptotically safe

gauge fields (for small ǫ > 0), complete asymptotic safety is achieved at two interacting UV

fixed points (see table 1). We conclude that triviality is evaded in the large-N limit with

and without asymptotic freedom in the gauge sector, although the specific details differ.
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Asymptotic freedom in the gauge sector had to be given up for the Yukawa and scalar

sectors to develop interacting UV fixed points.

5 Towards asymptotic safety at strong coupling

It would be useful to understand the existence or not of UV fixed points in non-Abelian

gauge theories with matter and away from the regime where asymptotic safety is realised

perturbatively and ǫ is small. In this section, we indicate some directions towards larger ǫ,

with and without scalar matter.

5.1 Beyond the Veneziano limit

Presently, our study is bound to the second nontrivial order within perturbation theory and

to the leading order in 1/NF , 1/NC ≪ 1, allowing for an accurate determination of the UV

fixed point in the regime (3.12). The stability in the result makes it conceivable that the UV

fixed point may persist even for finite values of ǫ. With increasing ǫ, the upper bound (3.31)

which has arisen at NNLO comes into play. Solutions (NC , NF ) to the constraint

0 ≤ ǫ(NC , NF ) < ǫmax , (5.1)

where we take for ǫmax its value at NNLO given in (3.31), would then be likely candidate

theories where the fixed point may exist even for finite but small couplings. The first few

such solutions with the smallest numbers of fields are

(NC , NF ) = (5, 28), (7, 39), (9, 50), (10, 56), (11, 61), (12, 67), · · · . (5.2)

Once NC > 12, more than one solution for NF may exist. Extending our study to N3LO

should improve the estimate for the window (5.1) for large N . For finite values of NF

and NC , the existence of an asymptotically safe window can in principle be tested using

non-perturbative tools such as functional renormalisation [111–114], or the lattice.

5.2 Infinite order perturbation theory

Interestingly, an infinite order result is available for nonabelian gauge theories with

a finite number of colors NC < ∞, without scalars, but with NF → ∞ many Dirac

fermions transforming according to a given representation of the gauge group [115], see

also [116, 117] and references therein. In the terminology of this work, this corresponds to

the parameter regime

1 ≪ ǫ , (5.3)

see (3.11). In this limit the parametric deviation from asymptotic freedom is large, and

the model becomes partly abelian [118]. Defining x = 4NFTR α with α = g2/(4π)2

and TF the trace normalization, it is possible to sum exactly the infinite perturbative

series for the gauge β-function for large numbers of flavors. The all-order result has the

form [116, 118, 119]
3

2x

β(x)

x
= 1 +

H(x)

NF
+O

(

N−2
F

)

(5.4)
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Figure 7. The fully resummed gauge β function (5.4) is shown to leading order in 1/NF including

the Gaussian and the UV fixed point (NC = 5 and NF = 28).

and an integral representation of H(x) can be found in [116] (see figure 7 for an example).

Adopting TF = 1
2 , one can show that the function H(x) is finite for 0 ≤ x < 3 with a neg-

ative logarithmic singularity at x = 3 where H(x) = NC/8× ln |3−x| + const. +O(3−x).
(Similar results are found for other representations as well.) This structure implies the

existence of a nontrivial UV fixed point to leading order in 1/NF . As a word of caution,

however, we remind the reader that an infinite order perturbative result may be upset

non-perturbatively, or by higher order terms in N−1
F (see [116] for a discussion of the

latter in QED). Expanding about the fixed point, the two leading terms read

α∗ =
3

2NF
− 1

2NF
exp

(

−a · NF

NC
+ b(NC)

)

(5.5)

where a = 8, and b(NC) ≃ 15.857 + 2.632/N2
C . The UV fixed point starts dominating

the RG running once (α∗ − α)/α∗ . NC/(16NF ) and its basin of attraction becomes

algebraically small for large NF ; see figure 7. Using the explicit form for H(x) we also

find the universal eigenvalue at the fixed point (5.5) of the infinite order β-function (5.4),

ϑ = −3

4

NC

NF
exp

(

a · NF

NC
− b(NC)

)

(5.6)

By construction, the result (5.6) is valid in the limit NC/NF ≪ 1 where the eigenvalue

becomes parametrically large. The exponent ν = −1/ϑ for the correlation length becomes

very small, ν → 0. Eigenvalues which grow rapidly with the number of degrees of freedom

have been observed previously for quantum gravity in the large dimensional limit in the

continuum [17, 18, 73] and from lattice considerations [120].

5.3 Finite order perturbation theory

The origin of asymptotic safety in Yang-Mills theory with (5.5), (5.6) is different from the

one observed in section 3, because the vanishing of the gauge β-function (5.4) arises as
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an infinite order effect due to gluon and fermion loops for large ǫ, rather than through an

order-by-order cancellation of fluctuations from gauge, fermion and scalar fields for small

ǫ. It would be useful to understand whether the result (5.5) persists beyond the limit of

infinite NF with fixed and finite NC . To that end, we test the continuity of the fixed point

in (NF , NC) by combining two observations. Firstly, we notice that a precursor of the

fixed point (5.5) is already visible within perturbation theory at finite orders. To see this

explicitly, we come back to our equations at NNLO and switch off the Yukawa and scalar

coupling, αh = 0, αy = 0 and αv = 0. In the parameter regime (5.3), we then find the UV

fixed point α∗
g = 3/(2

√
7ǫ) + subleading, and the eigenvalue ϑ = −4

√
ǫ/
√
7 + subleading.

Adopting the same definition for the coupling as in (5.5), this result translates into

α∗ =
3

2
√
7

1
√

NC NF

,

ϑ = − 4√
7

√

NF

NC
,

(5.7)

to leading order in 1/ǫ and 1/NF . A few comments are in order. Comparing (5.7)

with (5.5), (5.6) for fixed NC , we find that the 1/NF decay of the fixed point is replaced by a

softer square-root decay due to the finite order approximation in perturbation theory. The

non-analytic dependence onNF andNC develops into the result (5.5) with increasing orders

in perturbation theory where the power law behaviour becomes α∗ ∼ N
(2−p)/(p−1)
F [115],

provided the p-loop coefficient is negative [117]. We also find that the eigenvalue ϑ in (5.7)

grows large in the regime (5.3), modulo subleading corrections. While the growth rate

ϑ ∼ −
√
NF in (5.7) is weaker than the one observed in (5.6), the correlation length expo-

nent ν shows the same qualitative behaviour ν → 0 as the infinite order fixed point. We

thus may conclude that (5.7) is the low-order precursor to the all-order result (5.5).

Secondly, for the finite order fixed point (5.7) we observe that the limits 1/NC → 0

with NF /NC fixed can be accessed, and hence finite values for ǫ with (5.3), because the

underlying NNLO equations remain valid in this parameter regime. Note that this limit is

not covered by the rationale which has led to (5.4). The UV fixed point then reads

α∗ =
33 + 6ǫ

4
√
7 ǫ

1

NF
. (5.8)

For fixed ǫ, the fixed point shows the same 1/NF behaviour as the fixed point (5.5). The

coefficient in front of 1/NF in (5.8) is larger than the fixed point (5.5) for all finite ǫ.

Unlike (5.6), its eigenvalue (5.7) remains bounded since NF /NC is finite. It would thus

seem that the inclusion of more gluons or less fermions maintains the UV fixed point, albeit

with a softened UV scaling behaviour and at stronger coupling. The continuity of results

in (NF , NC) suggests that the UV fixed point (5.5) is not an artefact of the large-NF limit,

but rather a fingerprint of a fixed point in the physical theory.

In summary, the observations in this section indicate that the matter-gauge systems

studied here have a sufficiently rich structure to admit asymptotically safe UV fixed points

also for finite (NC , NF ), with and without scalar matter, in addition to the weakly cou-

pled UV fixed point for small ǫ. More work is required to identify them reliably within

perturbation theory and beyond, and for generic values of ǫ.
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6 Conclusion

We have used large-N techniques to understand the ultraviolet behaviour of theories involv-

ing fundamental gauge fields, fermions, and scalars. In strictly four space-time dimensions,

and in the regime where the gauge sector is no longer asymptotically free, we have identified

a perturbative origin for asymptotic safety. We found that all three types of fields are nec-

essary for an interacting UV fixed point to arise. The primary driver towards asymptotic

safety are the Yukawa interactions, which source the interacting fixed point for both the

gauge fields and the scalars. In return, the gauge fields stabilise an interacting fixed point

in the Yukawa sector. Fixed points are established in the perturbative domain, consistent

with unitarity. Triviality bounds and Landau poles are evaded. Here the scalar fields can

be considered as elementary.

It would be worth extending this picture within perturbation theory and beyond, also

taking subleading corrections into consideration, and for fields with more general gauge

charges, gauge groups, and Yukawa interactions. Once the number of fields is finite, asymp-

totic safety can in principle be tested non-perturbatively using the powerful machinery of

functional renormalisation [111–114], or the lattice. In a different vein, one might wonder

whether the weakly coupled ultraviolet fixed point has a strongly coupled dual. First steps

to extend the ideas of Seiberg duality [121] to non-supersymmetric theories have been dis-

cussed in [122, 123]. It has also been suggested that UV conformal matter could simplify

the quantisation of canonical gravity [39], or help to resolve outstanding puzzles in particle

physics and cosmology. Our study offers such candidates.
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