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Quantum-enhanced metrology can be achieved by entangling a probe with an auxiliary system, passing

the probe through an interferometer, and subsequently making measurements on both the probe and auxiliary

system. Conceptually, this corresponds to performing metrology with the purification of a (mixed) probe state.

We demonstrate via the quantum Fisher information how to design mixed states whose purifications are an

excellent metrological resource. In particular, we give examples of mixed states with purifications that allow

(near) Heisenberg-limited metrology and provide examples of entangling Hamiltonians that can generate these

states. Finally, we present the optimal measurement and parameter-estimation procedure required to realize these

sensitivities (i.e., that saturate the quantum Cramér-Rao bound). Since pure states of comparable metrological

usefulness are typically challenging to generate, it may prove easier to use this approach of entanglement and

measurement of an auxiliary system. An example where this may be the case is atom interferometry, where

entanglement with optical systems is potentially easier to engineer than the atomic interactions required to

produce nonclassical atomic states.

DOI: 10.1103/PhysRevA.92.032317 PACS number(s): 03.67.−a, 42.50.Dv, 42.50.St, 03.75.Dg

I. INTRODUCTION

There is currently great interest in quantum metrology,

the science of estimating a classical parameter φ with a

quantum probe at a higher precision than is possible with

a classical probe of identical particle flux. Given a fixed

number of particles, N , the ultimate limit to the sensitivity is

the Heisenberg limit �φ = 1/N [1,2]. Naı̈vely, the choice of

probe state is a solved problem; for instance, symmetric Dicke

states [1,3] and spin-cat states [4,5] input into a Mach-Zehnder

(MZ) interferometer yield sensitivities of
√

2/N and 1/N , re-

spectively. However, in practice achieving quantum-enhanced

sensitivities is a significant challenge. This is due to both the

deleterious effect of losses [6] and the challenges associated

with preparing nonclassical states with an appreciable number

of particles [7–11]. For example, protocols for generating a

spin-cat state commonly require a large Kerr nonlinearity,

which either is unavailable (e.g., in optical systems [12]), is

difficult to engineer (e.g., in microwave cavities [13,14]), or

detrimentally affects the efficient operation of the metrological

device (e.g., atom interferometers where the interfering modes

have large space-time separation [15–17]).

In this paper, we present an alternative route to quantum-

enhanced metrology based on purifications of mixed states.

Physically, this involves entangling the probe with an aux-

iliary system before the probe is affected by φ, making

measurements on both the probe and auxiliary system, and

subsequently using correlations between the two measurement

outcomes in order to reduce the uncertainty in the estimated

parameter (see Fig. 1). This approach is advantageous in

cases where it is easier to entangle the probe system with

another system, rather than directly create highly entangled

states of the probe system itself. An example of this is

atom interferometry; although quantum squeezing can be

produced in atomic systems via atomic interactions [18–31],

the technical requirements of high-sensitivity, path-separated

atom interferometers are better suited to enhancement via

entanglement with an optical system [32–37] and information

recycling [38–41].

The structure of this paper is as follows. In Sec. II

we introduce in detail the central idea of this paper: that

purifications of mixed states can possess a large quantum

Fisher information (QFI) and therefore represent an excellent

resource for quantum metrology. In Sec. III we specialize to an

N -boson probe state and Mach-Zehnder (MZ) interferometer,

and show how to engineer purifications that yield sensitivities

at and near the Heisenberg limit. Finally, in Sec. IV we present

optimal measurement schemes that allow these quantum-

enhanced sensitivities to be achieved in practice.

II. QUANTUM FISHER INFORMATION

FOR A PURIFICATION

We can determine the best sensitivity possible for any

given metrology scheme via the QFI, F , which places an

absolute lower bound on the sensitivity, �φ � 1/
√
F , called

the quantum Cramér-Rao bound (QCRB) [42–45]. This bound

is independent of the choice of measurement and parameter

estimation procedure, and depends only on the input state.

Explicitly, if a state ρ̂A is input into a metrological device

described by the unitary operator Ûφ = exp(−iφĜA), then the

QFI is

FA ≡ F[ĜA,ρ̂A] = 2
∑

i,j

(λi − λj )2

λi + λj

|〈ei |ĜA|ej 〉|2, (1)
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FIG. 1. The unitary ÛAB = exp(−iĤAB t/�) entangles system

A (probe) with system B (auxiliary) before system A passes

through a measurement device described by Ûφ = exp(−iφĜA).

If measurements are restricted to system A, then the QFI for an

estimate of φ is FA = F[ĜA,ρ̂A], where ρ̂A = TrB{|�AB〉〈�AB |}.
If measurements on both systems are permitted, then the QFI is

FAB = F[ĜA,|�AB〉] = 4Var(ĜA)ρ̂A
� FA.

where λi and |ei〉 are the eigenvalues and eigenvectors of

ρ̂A, respectively. If ρ̂A is pure, then Eq. (1) reduces to

FA = 4Var(ĜA).

A naı̈ve consideration of the pure state QFI suggests that

engineering input states with a large variance in ĜA is an

excellent strategy for achieving a high-precision estimate of

φ. However, there are many operations on ρ̂A that increase

Var(ĜA) at the expense of a decrease to the purity γ = Tr{ρ̂2
A}.

Since the QFI is convex in the state, any process that mixes

the state typically decreases the QFI. Consequently, any

improvement due to a larger Var(ĜA) is usually overwhelmed

by reductions in the QFI due to mixing.

In order to concretely demonstrate this point, we focus on an

N -boson state input into a MZ interferometer. As discussed in

Ref. [46], this system is conveniently described by the SU(2)

Lie algebra [Ĵi,Ĵj ] = iǫijk Ĵk , where ǫijk is the Levi-Civita

symbol, for i = x,y,z. A MZ interferometer is characterized

by ĜA = Ĵy ; therefore, for pure states, a large QFI requires a

large Var(Ĵy).

Without loss of generality, we restrict ourselves to the class

of input states

ρ̂A =
∫ 2π

0

dϕ P(ϕ)

∣

∣

∣

∣

α

(

π

2
,ϕ

)〉〈

α

(

π

2
,ϕ

)∣

∣

∣

∣

. (2)

Here |α(θ,ϕ)〉 = exp(−iϕĴz) exp(−iθ Ĵy)|j,j 〉 are spin coher-

ent states, where |j,m〉 are Dicke states with total angular

momentum j = N/2 and Ĵz projection m. We focus on the

following three states in class (2), which are in order of

increasing Var(Ĵy):

Case I: P(ϕ) = δ(ϕ), (3a)

Case II: P(ϕ) =
1

2π
, (3b)

Case III: P(ϕ) =
1

2

[

δ

(

ϕ −
π

2

)

+ δ

(

ϕ +
π

2

)]

. (3c)

These states can be conveniently visualized by plotting the

Husimi-Q function [47,48]

Q(θ,ϕ) =
2j + 1

4π
〈α(θ,ϕ)|ρ̂A|α(θ,ϕ)〉 , (4)

and the Ĵy projection of the state, P (Jy) = 〈Jy |ρ̂A|Jy〉, where

Ĵy |Jy〉 = Jy |Jy〉 (see Fig. 2).

None of these states yield sensitivities that surpass the

standard quantum limit (SQL), �φ = 1/
√

N . In case I, ρ̂A is

a pure spin coherent state, |α(π/2,0)〉, with FA = 4Var(Ĵy) =

FIG. 2. (Color online) Husimi-Q function for case I (a), case II

(b), and case III (c). The projection in the Ĵy basis, P (Jy) is shown

for case I (d), case II (e), and case III (f). N = 20 for all frames.

N . In case II, ρ̂A is an incoherent mixture of Dicke states (i.e.,

it contains no off-diagonal terms in the |j,m〉 basis). Although

4Var(Ĵy) = N (N + 1)/2 is much larger than for case I, the QFI

is only FA = N/2. Finally, case III is an incoherent mixture

of maximal and minimal Ĵy eigenstates with 4Var(Ĵy) = N2,

which is the maximum possible value in SU(2). However, since

the state is mixed the QFI is significantly less than this, with

FA = N/2.

However, suppose the mixing in ρ̂A arises from entan-

glement with an auxiliary system B before system A passes

through the metrological device (see Fig. 1). Specifically, for

an input pure state |�AB〉 of a composite system A ⊗ B, where

ρ̂A = TrB{|�AB〉〈�AB |}, the QFI is

FAB ≡ F[ĜA,|�AB〉]
= 4

(

〈�AB |Ĝ2
A|�AB〉 − 〈�AB |ĜA|�AB〉2

)

= 4
(

TrA[Ĝ2
Aρ̂A] − TrA[ĜAρ̂A]2

)

≡ 4Var(ĜA)ρ̂A
. (5)

Consequently, for a purification of ρ̂A the QFI only depends

on the variance in ĜA of ρ̂A [41,49]. Our naı̈ve strategy of

preparing a state with large Var(ĜA) irrespective of its purity

is now an excellent approach. Indeed, in this situation the states

in cases I–III are now also arranged in order of increasing QFI,

with cases II and III attaining a QFI of N (N + 1)/2 and N2,

respectively. It is interesting to note that the QFI for case

III is the maximum allowable for N particles in SU(2) [50]

and is usually obtained via the difficult to generate spin-cat

state, which is a macroscopic superposition, rather than a

classical mixture, of spin coherent states. Note also that FAB

is independent of any particular purification, and convexity

implies that FAB � FA. That is, in principle any purification

of ρ̂A is capable of achieving sensitivities at least as good as,

and usually much better than, ρ̂A itself.

Quantum metrology with purifications is not simply a

mathematical “trick”; physically, a purification corresponds to

entangling the probe system A with some auxiliary system B,

and permitting measurements on both systems [51]. Therefore,

the practical utility of our proposal depends crucially on the

existence of an entangling Hamiltonian that can prepare ρ̂A in

a state with large Var(ĜA)ρ̂A
.
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For the three cases described by Eqs. (2) and (3), a

purification of ρ̂A can be written as

|�AB〉 =
j

∑

m=−j

cm|j,m〉 ⊗ |Bm〉, (6)

with case I corresponding to 〈Bm|Bn〉 = 1, case II corre-

sponding to 〈Bm|Bn〉 = δn,m, and case III corresponding to

〈Bm|Bn〉 = 1(0) for |n − m| even (odd). In the following

section, we present a simple scheme that converts a shot-noise

limited spin coherent state [such as case I] to the enhanced

QFI purifications of cases II and III.

III. EXAMPLE ENTANGLING DYNAMICS LEADING

TO INCREASED QFI

Consider again the N -boson probe state (system A) input

into a MZ interferometer (i.e., ĜA = Ĵy). The QFI for a

purification of ρ̂A can be written as

FAB = 4
(〈

Ĵ 2
y

〉

− 〈Ĵy〉2
)

= F0 + F1 + F2, (7)

with

F0 =
N

2
(N + 2) − 2

〈

Ĵ 2
z

〉

, (8a)

F1 = −〈i(Ĵ+ − Ĵ−)〉2, (8b)

F2 = −〈Ĵ 2
+ + Ĵ 2

−〉, (8c)

where Ĵ± = Ĵx ± iĴy . Note that F0,F1, and F2 depend only

on the matrix elements of ρ̂A with |n − m| equal to 0,1, and

2, in the Ĵz basis; writing FAB in this form is very convenient

for what follows.

Before the interferometer, we assume the probe is coupled

to some auxiliary system B via the Hamiltonian

ĤAB = �gĴzĤB . (9)

When system B is a photon field and ĤB is proportional to the

number of photons in the field, then ĤAB describes the weak

probing of the population difference of an ensemble of two-

level atoms with far-detuned light [37,52–61], or dispersive

coupling between a microwave cavity and a superconducting

qubit [62–64]. We will explore this specific case shortly;

however, for now we keep ĤB completely general. If the initial

system state is a product state |�AB(0)〉 = |�A〉 ⊗ |�B〉, after

some evolution time the state of the system will be given by

Eq. (6) with cm = 〈m|�A〉 and |Bm〉 = exp(−imgtĤB)|�B〉.
The reduced density operator of system A is then

ρ̂A =
j

∑

n,m=−j

cnc
∗
mCn−m|j,n〉〈j,m|, (10)

where the coherence of system A is determined via

Cn−m = 〈Bm|Bn〉 = 〈�B |e−i(n−m)gtĤB |�B〉 . (11)

When Cn−m = 1, the system remains separable and system A

is a pure state, whereas if Cn−m = δn,m then ρ̂A is an incoherent

mixture of Dicke states.

Using Eq. (10), F0,F1, and F2 can be written as

F0 =
N

2
(N + 2) − 2

〈

Ĵ 2
z

〉

, (12a)

F1 = −〈i(C1Ĵ+ − C∗
1 Ĵ−)〉2, (12b)

F2 = −(C2〈Ĵ 2
+〉 + C∗

2 〈Ĵ 2
−〉), (12c)

where the above expectation values are calculated with respect

to |�A〉. The effect of the entanglement between systems A and

B is entirely encoded in the coherences C1 and C2; coherences

greater than second order do not affect the QFI.

Let us consider the effect on the QFI of each term in Eq. (7).

F0 is independent of the entanglement between systems A and

B, and will be of order N2/2 if |�A〉 has 〈Ĵ 2
z 〉 ∼ N (e.g., the

spin coherent state |α(π/2,ϕ)〉 has 〈Ĵ 2
z 〉 = N/4). This suggests

that a sufficient condition for Heisenberg scaling isF1 ∼ F2 ∼
〈Ĵ 2

z 〉 ∼ N . In fact, since F1 � 0, the maximum QFI state must

necessarily have C1 = 0. In contrast, F2 can be positive or

negative, in which case a state with C2 = 0 and another state

with C2 = 1 and F2 ∼ +N2/2 might both be capable of (near)

Heisenberg-limited metrology. We consider examples of both

states below.

A. Case II: Example dynamics yielding FAB ≃ N2/2

To concretely illustrate the increased QFI a purification of

ρ̂A can provide, we assume system B is a single bosonic mode,

described by annihilation operator b̂, and take ĤB = b̂†b̂ such

that

ĤAB = �gĴzb̂
†b̂. (13)

If the initial state of system B is a Glauber coherent state

|β〉 [65], then the coherences described by Eq. (11) simplify

to

Cn−m = exp[−|β|2(1 − e−i(n−m)gt )]. (14)

|Cn−m|2 decays on a time scale gt ∼ [(n − m)|β|2]−1. Al-

though the nonorthogonality of 〈β|βeiθ 〉 ensures that Cn−m

never actually reaches zero, it becomes very small for even

modest values of |β|2.

If the initial condition of system A is |�A〉 = |α(θ,φ)〉, then

FAB has the simple analytic form given by (see Appendix)

F0 = N

(

1 +
(N − 1)

2
sin2 θ

)

, (15a)

F1 = −N2 sin2 θ sin2(|β|2 sin(gt) + φ)e−4|β|2 sin2(gt/2), (15b)

F2 =
N (1 − N )

2
sin2 θ cos(|β|2 sin(2gt) + 2φ)e−2|β|2 sin2(gt).

(15c)

In contrast, calculating FA via Eq. (1) requires the diagonal-

ization of ρ̂A, which must be performed numerically.

We first demonstrate the effect of vanishing first- and

second-order coherence on FAB by preparing system A in

the maximal Ĵx eigenstate, |α(π/2,0)〉, with N = 100, and

a Glauber coherent state for system B with average particle

number |β|2 = 500. The initial state for system A is precisely

case I [see Eq. (3a)] and has a QFI of N . As shown in Fig. 3,
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FIG. 3. (Color online) Time snapshots of the Husimi-Q function

and Ĵy projection illustrating the evolution of a maximal Ĵx eigenstate

under entangling Hamiltonian Eq. (13). The snapshots were chosen

to correspond to times when the rotation around the Jz axis is such

that 〈Ĵy〉 = 0, which roughly corresponds to the local maxima of FAB

in Fig. 4(c). (Parameters: N = 100,|β|2 = 500).

under the evolution of Eq. (13), ρ̂A tends towards an incoherent

mixture of Dicke states [case II], with the corresponding

broadening of the P (Jy) distribution.

Figure 4(a) shows that both coherences C1 and C2 rapidly

approach zero, which causes F1 and F2 to vanish [see

Fig. 4(b)]. Consequently, FAB approaches F0 = N (N + 1)/2,

which allows a phase sensitivity of approximately
√

2×
Heisenberg limit [see Fig. 4(c)]. In contrast, the effect of the

mixing causes the QFI of ρ̂A itself to decrease from N to

FA = N/2, with FA � N for all t . This remains true even

if ĜA is rotated to lie in an arbitrary direction on the Bloch

sphere.

The oscillations in F1 and F2 (and consequently FA and

FAB) before the plateau are due to the complex rotation

of C1 and C2, which causes rotations of ρ̂A around the

Jz axis before being overwhelmed by the overall decay in

magnitude. Furthermore, although the purity of the state also

0

0.5

1

−10000

−5000

0

5000

0 0.05 0.1 0.15
10

0

10
2

10
4

Q
F

I

gt

(a)

(b)

(c)

FIG. 4. (Color online) Evolution of a maximal Ĵx eigenstate

under entangling Hamiltonian Eq. (13). (a) Coherences |C1|2 (solid

line), |C2|2 (dashed line), and purity γ (dot-dashed line). (b) Three

components of FAB [see Eq. (7)]: F0 (dot-dashed line), F1 (solid

line), and F2 (dashed line). (c) QFI for ρ̂A,FA (dashed line) and a

purification of ρ̂A,FAB (solid line). For reference, we have included N

(dotted line) andF0 = N (N + 1)/2 ≈ N2/2 (dot-dashed line), which

correspond to phase sensitivities at the SQL and
√

2× Heisenberg

limit, respectively. (Parameters: N = 100,|β|2 = 500.)

FIG. 5. (Color online) Husimi-Q function and Ĵy projection for

an initial state |�AB (0)〉 = |α(π/2,π/2)〉 ⊗ |β〉 under the evolution

of Eq. (13) for different values of gt . The Q function is symmetric

about reflection of the Jy axis, resulting in part of the function being

hidden from view on the reverse side of the sphere. (Parameters:

N = 100,|β|2 = 500.)

decays, it never vanishes, thereby illustrating that it is not the

entanglement per se that is causing the QFI enhancement for

a purification of ρ̂A.

B. Case III: Example dynamics yielding FAB = N2

At gt = π , there is a revival in |Cn|2 for n even, but not

for n odd. Figure 5 shows the Husimi-Q function under the

evolution of Eq. (13) for times close to gt = π , when the initial

state of system A is the maximal Ĵy eigenstate |α(π/2,π/2)〉.
The QFI is initially zero, but the decay of C1 and C2 rapidly

increases to FAB = F0 = N (N + 1)/2 as in the previous

example. As gt → π , the revival of |C2|2 causes FAB to briefly

increase to N2 (see Fig. 6). This is the Heisenberg limit, which

is the QFI of a (pure) spin-cat state and the maximum QFI for

SU(2) [50]. At gt = π,ρ̂A is identical to a classical mixture of

|α(π/2,π/2)〉 and |α(π/2, − π/2)〉; however, itsQ function is

similar to that of a spin-cat state, and purifications of it behave

0

0.5

1

−5000

0

5000

0.97 0.98 0.99 1 1.01 1.02 1.03
0

5000

10000

Q
F

I

gt/π

(a)

(b)

(c)

FIG. 6. (Color online) Evolution of a maximal Ĵy eigenstate near

gt = π under entangling Hamiltonian Eq. (13). (a) |C1|2 (solid line),

|C2|2 (dashed line), and γ (dot-dashed line). (b) F0 (dot-dashed line),

F1 (solid line), and F2 (dashed line). (c) FA (dashed line) and FAB

(solid line). For comparison, we have included F0 = N (N + 1)/2 ≈
N 2/2 and the Heisenberg limit N2 (dot-dashed lines); FA � N for

all t . (Parameters: N = 100,|β|2 = 500.)
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as a spin-cat state for metrological purposes. For these reasons,

we call this state a pseudo-spin-cat state.

C. Example dynamics for particle-exchange Hamiltonian

In the previous two examples the Ĵz projection was a

conserved quantity, so any entanglement between systems A

and B can only degrade the coherence in the Ĵz basis of system

A (ultimately resulting in an enhanced QFI). The situation is

more complicated when considering a Hamiltonian that does

not conserve the Ĵz projection, such as when a spin flip in

system A is correlated with the creation or annihilation of

a quantum in system B. Here, we encounter scenarios where

the interaction can either create or destroy coherences in the Ĵz

basis of system A, and although a significant QFI enhancement

is still possible, it depends upon the initial state of system B.

As a concrete illustration, consider the particle-exchange

Hamiltonian

Ĥ± = �g(Ĵ±b̂† + Ĵ∓b̂), (16)

and assume that system A is initially prepared in the max-

imal Ĵz eigenstate |�A〉 = |α(0,0)〉 = |j,j 〉 (note this has

Var(Ĵy) = N/4, and therefore a QFI of N ). Then Ĥ− and Ĥ+
physically correspond to Raman superradiance [38,66] and

quantum state transfer [34–37,39,40] processes, respectively.

After some period of evolution, the combined state of systems

A ⊗ B takes the form of Eq. (6).

First, consider the case when the initial state for system

B is a large amplitude coherent state (i.e., |�B〉 = |β〉). Here

the addition or removal of a quantum to or from system B

has a minimal effect on the state and the system remains

approximately separable, since |〈Bn|Bm〉|2 ≈ 1. It is therefore

reasonable to make the undepleted pump approximation b̂ →
β, such that Ĥ± → �gβĴx (assuming β is real). Hence, the

effect of the interaction is simply a rotation around the Jx

axis, which can create coherence in the Ĵz basis, and so

FA = FAB � N for all time.

In the opposite limit where the initial state of system B is a

Fock state with NB particles, |�B〉 = |NB〉, then

|Bm〉 = |NB ± (m − j )〉, (17)

and 〈Bm|Bn〉 = δn,m. This ensures that the first- and second-

order coherences vanish, and F1 = F2 = 0 for all time. That

is, as illustrated in Fig. 7, the state moves towards the equator

FIG. 7. (Color online) Husimi-Q function and Ĵy projection for

an initial state |�AB (0)〉 = |α(0,0)〉 ⊗ |NB〉 under the evolution of

Ĥ− for different values of gt . (Parameters: N = 100,NB = 20).

0 0.05 0.1 0.15
10

1

10
2

10
3

10
4

Q
F

I

gt

FIG. 8. (Color online) FA (dashed line) and FAB (solid line) for

an initial state |�AB (0)〉 = |α(0,0)〉 ⊗ |NB〉 under the evolution of

Ĥ−. We have indicated N and N2/2 with black dotted lines for

comparison. (Parameters: N = 100,NB = 20.)

and ultimately evolves to an incoherent Dicke mixture [i.e.,

case II]. As described in Sec. III A, and shown in Fig. 8, the

QFI increases to a maximum of approximately FAB ≈ N2/2.

Although setting NB = 0 (i.e., a vacuum state) leads to a larger

variance in Ĵz,FAB still reaches approximately 70% of N2/2.

We therefore see that for the Hamiltonian (16), a large

QFI enhancement is achieved provided the initial state

|�B〉 has small number fluctuations. Compare this to the

Hamiltonian (13), where the choice |�B〉 = |NB〉 leads to no

entanglement between systems A and B, while in contrast an

initial state with small phase fluctuations (and therefore large

number fluctuations), such as a coherent state, causes rapid

decoherence in ρ̂A.

IV. OPTIMAL MEASUREMENT SCHEMES

Although the QFI determines the optimum sensitivity for a

given initial state, it is silent on the question of how to achieve

this optimum. It is therefore important to identify (a) which

measurements to make on each system and (b) a method of

combining the outcomes of these measurements—which we

refer to as a measurement signal (Ŝ)—that saturates the QCRB.

We do this below for purifications of the incoherent Dicke

mixture (case II) and the pseudo-spin-cat state (case III).

A. Optimal measurements for incoherent

Dicke mixture (case II)

It is worthwhile briefly recounting the optimal estimation

procedure for a symmetric Dicke state |j,0〉 input into a

MZ interferometer. A MZ interferometer rotates Ĵz accord-

ing to Ĵz(φ) = Û
†
φ ĴzÛφ = cos φĴz − sin φĴx . Since symmet-

ric Dicke states satisfy 〈Ĵx〉 = 〈Ĵz〉 = 〈Ĵ 2
z 〉 = 0 and 〈Ĵ 2

x 〉 =
N (N + 2)/8, it is clear that the fluctuations in Ĵz(φ) contain

the phase information, and therefore the quantity Ŝ = [Ĵz(φ)]2

oscillates between 0 and N (N + 2)/8. It can be shown that

at the operating point φ → 0,Var(Ŝ) → 0, and the quantity

(�φ)2 → Var(Ŝ)/(∂φ〈Ŝ〉)2 = 1/FA, and therefore the signal

Ŝ saturates the QCRB [3,67,68].

For an incoherent Dicke mixture, we have 〈Ĵx〉 = 〈Ĵy〉 =
〈Ĵz〉 = 0, and 〈Ĵ 2

x 〉 = N (N + 1)/8. Unfortunately, the nonzero

variance in Ĵz (i.e., 〈Ĵ 2
z 〉 = N/4) implies that Var(Ŝ) ≫ 0 for

all φ, and the signal no longer saturates the QCRB. However,

since the states |Bm〉 in the purification Eq. (6) are orthonormal,
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a projective measurement of some system B operator diagonal

in the |Bm〉 basis projects system A into a Ĵz eigenstate (i.e., a

Dicke state). That is, these measurement outcomes on system

B are correlated with Ĵz measurement outcomes on system A.

Therefore, subtracting both measurements yields a quantity

with very little quantum noise.

More precisely, if we can construct an operator ŜB on

system B that is correlated with Ĵz measurements on system A

(i.e., ŜB |�AB〉 = Ĵz|�AB〉), then we can construct the quantity

Ŝ0 = Ĵz − ŜB which has the property 〈Ŝ0〉 = 〈Ŝ2
0 〉 = 0. This

motivates the signal choice

Ŝ = (Û
†
φŜ0Ûφ)2 = (cos φĴz − sin φĴx − ŜB)2. (18)

Using ŜB |�AB〉 = Ĵz|�AB〉 and the fact that non-Ĵz-

conserving terms vanish due to the absence of off-diagonal

terms in the Ĵz representation of ρ̂A (e.g., expectation values

with an odd power of Ĵx vanish), we can show that

〈Ŝ〉 =
〈

Ĵ 2
z

〉

(cos φ − 1)2 +
〈

Ĵ 2
x

〉

sin2 φ, (19a)

〈Ŝ2〉 =
〈

Ĵ 4
z

〉

(cos φ − 1)4 +
〈

Ĵ 4
x

〉

sin4φ

+
〈

Ĵ 2
z Ĵ 2

x + Ĵ 2
x Ĵ 2

z + 4ĴzĴx Ĵx Ĵz

〉

sin2φ(cos φ − 1)2

+ 2i〈(ĴzĴx Ĵy − Ĵy Ĵx Ĵz)〉 sin2φ cos φ(cos φ − 1)

+
〈

Ĵ 2
y

〉

cos2φ sin2φ. (19b)

Note that the above expectation values can be taken with

respect to |�AB〉 or ρ̂A. The best sensitivity occurs at small

displacements around φ = 0. Taking the limit as φ → 0 and

noting that 〈Ĵ 2
x 〉 = 〈Ĵ 2

y 〉 gives

(�φ)2 =
Var(Ŝ)

(∂φ〈Ŝ〉)2

∣

∣

∣

∣

φ=0

=
1

4
〈

Ĵ 2
x

〉 =
1

4
〈

Ĵ 2
y

〉 =
1

FAB

. (20)

This demonstrates that the signal Eq. (18) is optimal since it

saturates the QCRB.

B. Optimal measurements for pseudo-spin-cat state (case III)

Pure spin-cat states have the maximum QFI possible for

N particles in SU(2), are eigenstates of the parity operator,

and indeed parity measurements saturate the QCRB [69].

Pseudo-spin-cat states (case III) also have maximal QFI, and

since 〈Bn|Bm〉 = 1(0) for |n − m| even (odd), a projective

measurement of system B yields no information other than the

parity of the Ĵz projection. This suggests that a measurement

of parity could be optimal.

In analogy with case II, our aim is to construct an operator

Ŝ0 where the correlations between systems A and B lead to

a reduction in Var(Ŝ0) and the system mimics a pure spin-cat

state. Introducing the quantity

Ŝ0 = �̂AŜB ≡ �̂A�̂B, (21)

where �̂A(B) is the parity operator for system A(B), defined

by �̂A|j,m〉 = (−1)m|j,m〉 and �̂B |Bm〉 = (−1)m|Bm〉, we

see that pseudo-spin-cat states satisfy Ŝ0|�AB〉 = |�AB〉, and

therefore Var(Ŝ0) = 0. This motivates the signal choice Ŝ =
Û

†
φŜ0Ûφ .

To calculate the sensitivity, we need to compute 〈Ŝ〉 and

〈Ŝ2〉. Trivially, 〈Ŝ2〉 = 1 for all states. For φ ≪ 1, expanding

Ûφ to second order in φ gives

〈Ŝ〉 ≈
〈(

1 + iφĴy − 1
2
φ2Ĵ 2

y

)

Ŝ0

(

1 − iφĴy − 1
2
φ2Ĵ 2

y

)〉

= 1 + iφ(〈Ĵy Ŝ0〉 − 〈Ŝ0Ĵy〉)

+φ2
[

〈Ĵy Ŝ0Ĵy〉 − 1
2

(〈

Ĵ 2
y Ŝ0

〉

+
〈

Ŝ0Ĵ
2
y

〉)]

+ O(φ3), (22)

The relation 〈Bn|Bn±1〉 = 0 ensures that terms linear in Ĵy go

to zero:

〈Ĵ+〉 =
∑

m,n

cmc∗
n〈j,n|Ĵ+|j,m〉〈Bn|Bm〉

∝
∑

n,m

cmc∗
nδn,m+1〈Bn|Bm〉

=
∑

m

cmc∗
m+1〈Bm+1|Bm〉 = 0 . (23)

However, unlike case II, the condition 〈Bn|Bn±2〉 = 1 pre-

serves terms such as 〈Ĵ 2
+〉. Noting that Ĵy flips the parity of

any state in subsystem A but not subsystem B:

�̂AĴy |�AB〉 = −Ĵy�̂A|�AB〉, (24a)

�̂B Ĵy |�AB〉 = Ĵy�̂B |�AB〉, (24b)

and using Ŝ0|�AB〉 = |�AB〉 gives

〈Ĵy Ŝ0Ĵy〉 = −
〈

Ŝ0Ĵ
2
y

〉

= −
〈

Ĵ 2
y Ŝ0

〉

= −
〈

Ĵ 2
y

〉

. (25)

Therefore

〈Ŝ〉 = 1 − 2φ2
〈

Ĵ 2
y

〉

+ O(φ3) . (26)

Since Ŝ2
0 = 1 implies that Ŝ2 = 1, we obtain

Var(Ŝ) = 4φ2
〈

Ĵ 2
y

〉

+ O(φ4), (27)

and consequently

(�φ)2 =
Var(Ŝ)

(∂φ〈Ŝ〉)2
=

4φ2
〈

Ĵ 2
y

〉

16φ2
〈

Ĵ 2
y

〉2
=

1

4
〈

Ĵ 2
y

〉 =
1

FAB

. (28)

This demonstrates that the signal saturates the QCRB and is

therefore optimal.

The optimal estimation schemes presented in Secs. IV A

and IV B illustrate a somewhat counterintuitive fact: Although

the optimal measurement of system B for a pseudo-spin-cat

state provides less information about system A than for an

incoherent Dicke mixture, the pseudo-spin-cat state yields the

better (in fact best) sensitivity.

C. System B observables that approximate optimal

measurements

We now turn to the explicit construction of physical

observables that approximate ŜB . In general, the choice of ŜB

depends upon the specific purification of ρ̂A. Physically, the

initial state of system B and the entangling Hamiltonian matter.

However, there is no guarantee that ŜB exists, and if it does

there is no guarantee that a measurement of this observable

can be made in practice. Nevertheless, as we show below, it

may be possible to make a measurement of an observable

that approximates ŜB and can therefore give near-optimal

sensitivities.
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1. Case II

To begin, consider the situation in Sec. III A: the evolution

of the state |α(π/2,0)〉 ⊗ |β〉 under the Hamiltonian (13). We

require ŜB |�AB〉 = Ĵz|�AB〉. After some evolution time t ,

|�AB〉 =
j

∑

m=−j

cm|j,m〉|βe−imgt 〉 . (29)

Clearly, the phase of the coherent state is correlated with the Ĵz

projection of system B. This can be extracted via a homodyne

measurement of the phase quadrature ŶB = i(b̂ − b̂†) [70]. In

fact, provided mgt ≪ 1, phase quadrature measurements of

|β exp(−imgt)〉 are linearly proportional to the Ĵz projection:

〈βe−imgt |ŶB |βe−imgt 〉 = 2β sin (mgt) ≈ 2βmgt, (30)

where without loss of generality we have taken β to be real

and positive. Consequently, the scaled phase quadrature

ŜB =
ŶB

2βgt
(31)

satisfies

〈�AB |(Ĵz − ŜB)|�AB〉 ≈ 0, (32a)

〈�AB |(Ĵz − ŜB)2|�AB〉 ≈
1

(2βgt)2
, (32b)

and so the fluctuations in (Ĵz − ŜB) become arbitrarily small

(and ŜB becomes perfectly correlated with Ĵz) as (βgt)2

becomes large. This suggests that Eqs. (18) and (31) should

be a good approximation to an optimal measurement signal.

More precisely, assume that

1

β
≪

Ngt

2
≪ 1. (33)

The first inequality ensures that 〈βe−ingt |βe−imgt 〉 ≈ δn,m and

so ρ̂A is approximately an incoherent Dicke mixture, while the

second inequality implies that we are in the linearized regime

where Eqs. (30) and (32) hold. Then the signal

Ŝapprox =
(

Ĵz cos φ − Ĵx sin φ −
ŶB

2gt

)2

(34)

yields the sensitivity

(�φ)2 ≈
1

(∂φ〈Ŝ〉)2

{

Var(Ŝ) −
sin2(φ/2)

β2

〈

Ĵ 4
z

〉

+
2

(2βgt)4

+
4

(2βgt)2

[

(cos φ − 1)2
〈

Ĵ 2
z

〉

+ sin2 φ
〈

Ĵ 2
x

〉]

}

, (35)

where Var(Ŝ) and ∂φ〈Ŝ〉 are given by the expectations (19) of

the optimal signal Eq. (18). Figure 9 shows Eq. (35) compared

to an exact numeric calculation.

Condition (33) typically ensures that the term proportional

to 〈Ĵ 4
z 〉 is small in comparison to the term proportional to

1/(2βgt)2. We therefore see that our approximate signal Ŝapprox

gives a sensitivity worse than the QCRB, and furthermore at

an operating point φ �= 0. Nevertheless, �φ approaches the

QCRB at φ = 0 as β2 and (2βgt)2 approach infinity. Therefore,

for a sufficiently large βgt , we can achieve near-optimal

−0.4 −0.2 0 0.2 0.4

10
0

10
1

N
∆

φ

φ (rad)

FIG. 9. (Color online) �φ vs φ using Eq. (34) for a state of the

form Eq. (29), with N = 100, and gt = 10−2. The dot-dashed line

is with |β|2 = 106 (βgt = 10), and the solid line is for |β|2 = 104

(βgt = 1). The dashed line shows the approximate expression for the

sensitivity [Eq. (35) ] for |β|2 = 104. For |β|2 = 106, the numerical

calculation and Eq. (35) are identical. The upper and lower black

dotted lines represent the standard quantum limit (1/
√

N ) and
√

2/N ,

respectively. The divergence in �φ close to φ = 0 in both cases is due

to the imperfect correlations between ŜB and Ĵz leading to nonzero

variance in Ŝ. If the correlations were perfect and Var(Ŝ)|φ=0 = 0,�φ

would reach exactly 1/
√
FAB at φ = 0.

sensitivities close to φ = 0. This is illustrated in Fig. 9.

When βgt = 10, we find that �φ is very close to the QCRB.

In contrast, for βgt = 1, the imperfect correlations between

Ĵz and Ŝb prevent the sensitivity from reaching the QCRB;

nevertheless, the sensitivity is still below the SQL. Note that

there is a slight deviation between Eq. (35) and the numerical

calculation of the sensitivity using the state (29). This is due

to terms neglected by our approximations, in particular, the

nonlinear terms ignored by linearizations such as Eq. (30) and

those neglected terms that arise due to the small (but strictly

nonzero) off-diagonal elements of ρ̂A.

2. Case III

Now, consider the situation in Sec. III B: the evolution of

the state |α(0,0)〉 ⊗ |β〉 under the Hamiltonian (13) that at

gt = π approximately results in a pseudo-spin-cat state.

In order to find an operator that approximates ŜB = �̂B , we

introduce the amplitude quadrature operator X̂B = (b̂ + b̂†),

and notice that

〈βe−imπ |X̂B |βe−imπ 〉 = 2β(−1)m

= 2β〈j,m|�̂A|j,m〉. (36)

That is, amplitude quadrature measurements of |βe−imπ 〉 are

proportional to parity measurements on system B, which are

directly correlated with parity measurements on Ĵz eigenstates.

Indeed, the quantity

Ŝ0 = �̂A

X̂B

2β
, (37)

has a variance Var(Ŝ0) = 1/(2β)2 that becomes vanishingly

small as the amplitude of the coherent state is increased. We

therefore expect the signal

Ŝapprox = Û
†
φ

(

�̂A

X̂B

2β

)

Ûφ (38)
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−0.2 −0.1 0 0.1 0.2
0.8
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∆

φ

FIG. 10. (Color online) Phase sensitivity of the approximate sig-

nal Eq. (38) for a state of the form Eq. (29) at gt = π (i.e., a

pseudo-spin-cat state) with N = 20. The solid line and dashed line

are for |β|2 = 30 and |β|2 = 5, respectively. The black dotted line

indicates the Heisenberg limit �φ = 1/N (which is the QCRB).

Note that the vertical axis is a linear scale.

will be a good approximation to the optimal

measurement Ŝ.

Figure 10 shows the sensitivity for a state of the form

Eq. (29) at gt = π with N = 20. When |β|2 = 30, the

sensitivity is very close to the Heisenberg limit, while for

|β|2 = 5 there is a slight degradation in the sensitivity due

to imperfect correlations. In contrast to the approximate

optimal measurement scheme for case II, which requires a

large amplitude coherent state, here the signal (38) is almost

optimal even for small amplitude coherent states. This is

because 〈βe−iπ |β〉 = exp(−2|β|2) is approximately zero even

for modest values of β.

In situations where system A is an ensemble of atoms, and

system B is an optical mode, it would be challenging to achieve

the strong atom-light coupling regime required for gt = π . On

the other hand, the choice of an initial coherent state for system

B ensures that the sensitivity is reasonably insensitive to losses

in system B. In particular, since particle loss from a coherent

state acts only to reduce the state’s amplitude, provided the

coherent state remains sufficiently large after losses in order

to satisfy the requirements for near-optimal measurements,

near-Heisenberg-limited sensitivities should be obtainable.

3. Particle-exchange Hamiltonian

Finally, for completeness we include the optimal mea-

surement scheme for the state attained after evolving the

product state |α(0,0)〉 ⊗ |NB〉 under the Hamiltonian (16) (see

Sec. III C). The optimal measurement signal is simply Eq. (18)

with

ŜB =
N

2
± (Nb − b̂†b̂). (39)

This choice of ŜB can be constructed by counting the number

of particles in system B, and it satisfies ŜB |�AB〉 = Ĵz|�AB〉
as required. As any entangling Hamiltonian of the form

Ĥ± =
∑

k

Ak(Ĵ±b̂† + Ĵ∓b̂)k +
∑

j,k

Bj,k Ĵ
k
z (b̂†b̂)j (40)

will lead to a state of the form Eq. (6), with |Bm〉 given by

Eq. (17) (assuming an initial state |�A〉 = |α(0,0)〉,|�B〉 =
|NB〉), Eq. (39) also transfers to these systems.

V. DISCUSSION AND CONCLUSIONS

We have shown that purifications of mixed states represent

an excellent resource for quantum metrology. In particular,

we showed that if probe system A and auxiliary system B

are entangled such that the first- and second-order coherences

of system A vanish, then near-Heisenberg-limited sensitivities

can be achieved provided measurements on both systems A and

B are allowed. Although we focused on the situation where

this entanglement is generated via a few specific Hamiltonians,

our conclusions hold irrespective of the specific entanglement

generation scheme.

It is important to note that when the QFI approaches the

Heisenberg limit FAB = N2 (in case III, for example), this is

not the true Heisenberg limit, since N is only the number of

particles in system A (which pass through the interferometer),

rather than the total number of particles Nt in system A and

system B. However, we have chosen to report the QFI in terms

of N instead of Nt , since we envisage our protocol to be useful

in situations where the number of particles in system A is by

far the more valuable resource. For example, consider the case

of inertial sensing with atom interferometry, where system A is

atoms and system B is photons. Here the atoms are sensitive to

an inertial phase shift, but it is difficult to arbitrarily increase

the atomic flux. Using the techniques discussed above, an

improved inertial measurement can be achieved at the cost of

introducing some number of auxiliary photons, which is cheap

compared to increasing the total number of atoms.

While preparing this paper, we also numerically examined

the effect of decoherence on the sensitivity of our metrological

schemes. In particular, we found that the effect of particle

loss, spin flips, and phase diffusion on purifications of the

pseudo-spin-cat state from Fig. 2 was identical to that of a

pure spin-cat state.

Although these purified states are no more or less robust

to decoherence than other nonclassical pure states, there are

situations where they are easier to generate. The example

we are most familiar with is atom interferometry, where

atom-light entanglement and information recycling is more

compatible with the requirements of high-precision atom

interferometry than the preparation of nonclassical atomic

states via interatomic interactions [39]. However, controlled

interactions are routinely engineered between atoms and light

[37,71–73], superconducting circuits and microwaves [74,75],

light and mechanical systems [76], and ions and light [77–79].

Given that high-efficiency detection is available in all these

systems [80–85], the application of our proposal to a range of

metrological platforms is plausible in the near term.

Finally, we note that not all quantum systems are created

equal; certain quantum information protocols, such as quantum

error correction [86] and no-knowledge feedback [87], are

better suited to some platforms than others. Our proposal

allows an experimenter to both perform quantum-enhanced

metrology and take advantage of any additional benefits a

hybrid quantum system provides.
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APPENDIX: DERIVATION OF EQS. (15)

Here we derive the QFI FAB for a MZ interferometer with

the following entangled input:

|�AB(t)〉 = e−igtĴzN̂b |θ,ϕ〉 ⊗ |β〉, (A1)

where N̂b = b̂†b̂, system B is initially in a coherent state |β〉,
and system A is initially in a spin coherent state |θ,ϕ〉. Any

spin coherent state can be defined by rotating the maximal

Dicke state on the top pole of the Bloch sphere an angle θ

about the Jy axis and an angle ϕ about the Jz axis:

|θ,ϕ〉 ≡ R̂(θ,ϕ)|j,j 〉 = e−iϕĴze−iθ Ĵy |j,j 〉. (A2)

Recall that j = N/2, where N is the total number of system

A particles.

The QFI is

FAB = 4Var(eigtĴzN̂b Ĵye
−igtĴzN̂b ), (A3)

where the expectations in the variance are taken with respect

to the initial separable state, |θ,ϕ〉 ⊗ |β〉.
By application of the Baker-Campbell-Hausdorff formula

eÂB̂e−Â = B̂ + [Â,B̂] +
1

2!
[Â,[Â,B̂]]

+
1

3!
[Â,[Â,[Â,B̂]]] + · · · (A4)

it can be shown that

eigtĴzN̂b Ĵye
−igtĴzN̂b = sin(gtN̂b)Ĵx + cos(gtN̂b)Ĵy . (A5)

Therefore, since the initial state is separable, we obtain

FAB = 〈sin2(gtN̂b)〉
〈

Ĵ 2
x

〉

+ 〈cos2(gtN̂b)〉
〈

Ĵ 2
y

〉

+〈sin(gtN̂b) cos(gtN̂b)〉〈Ĵx Ĵy + Ĵy Ĵx〉

− (〈sin(gtN̂b)〉〈Ĵx〉 + 〈cos(gtN̂b)〉〈Ĵy〉)2. (A6)

The system A expectations are more easily computed

by rotating the operators by R̂(θ,ϕ) and then taking expec-

tations with respect to the Dicke state |j,j 〉. Specifically,

by virtue of

R̂†(θ,ϕ)ĴxR̂(θ,ϕ) = cos θ cos ϕĴx + cos θ sin ϕĴy − sin θĴz,

(A7a)

R̂†(θ,ϕ)ĴyR̂(θ,ϕ) = − sin ϕĴx + cos ϕĴy, (A7b)

and the application of Ĵ± = Ĵx ± iĴy with

Ĵ±|j,m〉 =
√

j (j + 1) − (m ± 1)|j,m ± 1〉, (A8)

we obtain

〈Ĵx〉 = j sin θ cos ϕ, (A9a)

〈Ĵy〉 = j sin θ sin ϕ, (A9b)

〈Ĵ 2
x 〉 =

j

2
(1 + (2j − 1) sin2 θ cos2 ϕ), (A9c)

〈Ĵ 2
y 〉 =

j

2
(1 + (2j − 1) sin2 θ sin2 ϕ), (A9d)

〈Ĵx Ĵy + Ĵy Ĵx〉 = j (2j − 1) sin2 θ sin ϕ cos ϕ. (A9e)

With some simplification this gives

FAB = 2j (1 + sin2 θ [(2j − 1)〈sin2(gtN̂b + ϕ)〉
− 2j 〈sin(gtN̂b + ϕ)〉2]). (A10)

Incidentally, by setting t = 0 we can see that the QFI for a

spin coherent state input never exceeds the standard quantum

limit:

F[Ĵy,|θ,ϕ〉] = 2j
(

1 − sin2 θ sin2 ϕ
)

� N. (A11)

In order to compute the system B expectations, note that

〈sin(gtN̂b + ϕ)〉 = −
i

2
(〈ei(gtN̂b+ϕ)〉 − 〈e−i(gtN̂b+ϕ)〉)

(A12a)

〈sin2(gtN̂b + ϕ)〉 =
2 − 〈e2i(gtN̂b+ϕ)〉 − 〈e−2i(gtN̂b+ϕ)〉

4
.

(A12b)

Furthermore, for any m,

〈eim(gtN̂b+ϕ)〉 = eimϕ〈β|βeimgt 〉

= exp[−|β|2(1 − eimgt ) + 2mϕ]. (A13)

Substituting Eqs. (A12) and (A13) into Eq. (A10) gives

FAB = F0 + F1 + F2, (A14)

with the expressions for F0,F1, and F2 listed in Eqs. (15).
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