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Abstract		15 
 16 
Genomic	analysis	has	found	that	the	transcriptome	in	both	humans	and	Drosophila	melanogaster	features	17 
large	numbers	of	long	non-coding	RNA	transcripts	(lncRNAs).	This	recently	discovered	class	of	RNAs	18 
regulates	gene	expression	in	diverse	ways,	and	has	been	involved	in	a	large	variety	of	important	biological	19 
functions.	Importantly,	an	increasing	number	of	lncRNAs	have	also	been	associated	with	a	range	of	human	20 
diseases,	including	cancer.	Comparative	analyses	of	their	functions	among	these	organisms	suggest	that	21 
some	of	their	modes	of	action	appear	to	be	conserved.	This	highlights	the	importance	of	model	organisms	22 
such	as	Drosophila,	which	shares	many	gene	regulatory	networks	with	humans,	in	understanding	lncRNA	23 
function	and	its	possible	impact	in	human	health.	This	review	discusses	some	known	functions	and	24 
mechanisms	of	action	of	lncRNAs	and	their	implication	in	human	diseases,	together	with	their	functional	25 
conservation	and	relevance	in	Drosophila	development.	26 
	27 
Introduction 28 
 29 
The	central	dogma	of	molecular	biology	as	proposed	by	Crick	in	1958,	often	paraphrased	as	“DNA	encodes	30 
RNA,	RNA	encodes	protein”,	implicates	RNA	as	a	molecular	intermediate	in	the	process	of	protein	synthesis	31 
from	the	relevant	encoding	gene.	As	early	as	the	1950s	however,	other	roles	for	non-coding	RNAs,	such	as	32 
transfer	RNAs	and	ribosomal	RNAs,	have	been	known	to	be	vital	to	biological	function.	This	showed	the	33 
central	dogma	to	be	an	over-simplified,	if	eloquent,	summary	of	the	flow	of	genetic	information.	Since	34 
then,	many	other	types	of	non-coding	RNA	have	been	shown	to	exist,	and	furthermore,	to	be	biologically	35 
relevant.	In	the	1990s,	several	studies	began	investigating	the	biological	purpose	of	longer	non	protein-36 
coding	RNAs,	such	as	Xist	[1],	which	did	not	fit	well	into	the	RNA	classifications	existing	at	the	time.	With	37 
further	advances	in	molecular	techniques	suggesting	that	only	2%	of	the	human	genome	is	comprised	of	38 
protein-coding	genes	[2],	and	rapidly	revealing	lncRNAs	with	biological	functions	(including	in	human	39 
diseases),	the	topic	has	become	an	extremely	promising	and	popular	avenue	of	investigation.	40 
	41 
In	this	review,	we	have	used	the	definition	of	lncRNAs	as	being	RNA	transcripts	longer	than	200	42 
nucleotides,	which	lack	a	significant	open	reading	frame	(greater	than	100	amino	acids	in	length)	[3].	This	43 
definition	is	routinely	used	in	the	annotation	of	the	Drosophila	and	other	genomes.	LncRNAs	are	highly	44 
abundant,	and	are	found	in	many	organisms	across	different	taxa,	including	humans,	mice,	Xenopus	45 
tropicalis,	Drosophila	melanogaster,	Schizosaccharomyces	pombe,	Saccharomyces	cerevisiae,	46 
Caenorhabditis	elegans,	Arabidopsis	thaliana,	Medicago	truncatula,	and	Zea	mays	[4].	LncRNAs	have	been	47 
shown	to	regulate	gene	expression	transcriptionally	[5-8]	and	post-transcriptionally	[9-13],	and	have	a	wide	48 
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range	of	cellular	and	molecular	functions.	Despite	these	proven	non-coding	functions,	there	exist	a	handful	49 
of	lncRNAs	that	have	been	shown	to	encode	small	open	reading	frame	(smORF)	peptides	with	proven	50 
cellular	functions	[14-19].	Recent	work	has	shown	that	lncRNAs	can	simultaneously	display	biological	51 
function	as	both	a	coding,	and	a	non-coding	RNA,	for	example	where	primary	transcripts	of	microRNAs	52 
encode	regulatory	peptides	[20,	21].	Additionally,	ribosome	profiling	and	bioinformatics	analyses	have	53 
identified	the	existence	of	thousands	of	lncRNAs	containing	putatively	functional	translated	smORFs	[19,	54 
22-25],	the	extent	of	which	may	depend	on	developmental	or	tissue	specific	context.	We	have	therefore	55 
used	the	accepted	definition	above,	which	coincides	with	genome	annotations.	56 
	57 
Drosophila	melanogaster,	the	common	fruit	fly,	is	a	well-established	model	organism	for	geneticists,	and	58 
one	in	which	lncRNAs	are	known	to	be	abundant.	With	an	estimated	75%	of	human	disease-linked	genes	59 
having	a	functional	orthologue	in	Drosophila,	and	many	basic	molecular	and	biological	functions	conserved	60 
between	species	[26,	27],	Drosophila	are	an	appealing	whole	animal	model	for	understanding	human	61 
disease.	In	addition	to	their	genetic	similarities,	the	fly	genome	has	been	incredibly	well	studied	and	fully	62 
sequenced,	with	a	wide	range	of	genetic	tools	and	gene-specific	knockdown	and	mutant	lines	readily	63 
available.	Combined	with	their	low	maintenance	cost,	short	generation	time,	high	fecundity,	and	compound	64 
factors	lending	themselves	to	ease	of	establishing	genetic	crosses,	it	is	easy	to	see	why	Drosophila	have	65 
emerged	as	one	of	the	foremost	systems	for	studying	the	genetic	components	of	human	disease,	and	have	66 
already	been	successfully	used	to	dissect	the	roles	and	mechanisms	of	certain	lncRNAs	[28].	67 
	68 
As	well	as	the	general	excellence	of	Drosophila	as	a	model	organism,	they	stand	out	as	particularly	apt	for	69 
the	study	of	lncRNA.	LncRNAs	evolve	rapidly,	and	can	act	as	flexible	scaffolds	tethering	together	one	or	70 
more	functional	elements	[29].	Drosophila	lncRNAs	also	appear	to	accumulate	relatively	few	deleterious	71 
changes,	due	to	genetic	drift,	compared	to	mammalian	lncRNAs	[30],	and	therefore	can	be	useful	in	72 
developing	strategies	to	identify	lncRNA	orthologues,	as	shown	for	roX	lncRNA	orthologues	in	Drosophilid	73 
species	[31].	Additionally,	Drosophila	is	an	excellent	model	system	to	functionally	characterise	lncRNA-74 
protein	complexes,	for	example	by	using	the	GAL4-UAS	system	to	express	lncRNAs	in	specific	tissues	or	by	75 
characterising	the	localisation	of	RNA-proteins	within	cells	(e.g.	7SK	snRNA	[32]).	76 
	77 
Molecular	functions	and	mechanisms	of	lncRNAs,	such	as	their	binding	to	protein	complexes,	definitively	78 
need	to	be	tested	in	vivo	in	order	to	be	well	characterized.	For	example,	in	vivo	experiments	have	shown	79 
that	only	the	lncRNA	transcribed	in	the	reverse	direction	from	the	Polycomb/Trithorax	response	elements	80 
can	bind	the	the	Polycomb	Repressive	Complex	2	component	Enhancer	of	Zeste,	which	provides	the	critical	81 
Histone	Methyl	Transferase	activity	required	for	transcriptional	silencing.	This	level	of	understanding	of	82 
such	complex	mechanisms	and	interactions	would	be	extremely	difficult	to	achieve	without	the	use	of	a	83 
tractable	in	vivo	system	such	as	that	provided	by	Drosophila.	84 
	85 
In	this	review,	we	will	be	examining	the	emerging	roles	and	relevance	of	lncRNAs	using	recent	work	86 
illustrating	their	biological	and	molecular	functions	in	Drosophila.	We	aim	to	examine	these	recent	87 
advances	in	our	understanding	of	lncRNAs	through	the	lens	of	their	potential	relevance	to	humans,	and	88 
particularly	human	disease.	By	doing	so,	we	hope	to	provide	a	concise	synopsis	of	the	topic,	and	89 
demonstrate	the	value	of	using	Drosophila	as	a	model	organism	for	understanding	the	roles	of	lncRNAs	at	90 
molecular	and	cellular	levels,	and	their	implications	in	human	disease.	91 
 92 
Abundance	and	localisation	of	lncRNAs	in	the	human	and	Drosophila	genomes	93 
 94 
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According	to	the	Ensembl	database,	lncRNAs	comprise	7841	of	the	63898	annotated	genes	in	the	human	95 
genome,	and	2366	of	the	17559	in	the	Drosophila	genome.	In	both	species,	they	account	for	a	similar	and	96 
substantial	proportion	of	the	entire	genome	(12.4%	and	13.5%	respectively).	Although	only	a	fraction	of	97 
these	have	been	investigated	experimentally,	information	on	their	sequences	and	loci	are	readily	available	98 
through	various	genomic	databases,	both	non-specific	(such	as	Ensembl),	and	dedicated	non-coding	RNA	99 
databases	(such	as	LNCipedia,	lncRNome,	and	lncRNAdb).		Additionally,	significant	bioinformatic	work	has	100 
been	carried	out	on	them	in	terms	of	their	expression	and	conservation	within	and	across	species	[33].	101 
With	so	much	information	on	lncRNA	now	available,	exploring	this	class	of	genes	with	a	thorough	102 
experimental	approach	has	become	more	feasible	in	recent	years.	103 
	104 
LncRNAs	vary	significantly	in	their	distribution	throughout	cellular	compartments,	with	the	majority	of	105 
transcripts	residing	predominantly	in	the	nucleus,	others	in	the	cytoplasm,	and	some	distributed	more	106 
evenly	between	the	two	[34,	35].	For	example,	the	roX	transcripts	in	Drosophila	are	found	in	the	nucleus,	107 
while	yar	is	cytoplasmic	[35].		The	localisation	of	lncRNAs	can	give	clues	about	their	function;	in	the	case	of	108 
a	chromatin	restructuring	lncRNA	such	as	roX1	or	roX2	it	must	be	nuclear	in	order	to	access	the	chromatin.	109 
Localisation	of	particular	lncRNAs	can	also	affect	their	susceptibility	to	suppression	by	RNA	interference	and	110 
antisense	oligonucleotides.	An	example	of	this	is	the	suppression	of	nuclear	lncRNAs	MALAT1	and	NEAT1	111 
which	in	humans	is	more	efficient	using	antisense	methods,	whereas	cytoplasmic	lncRNAs	DANCR	and	112 
OIP5-AS1	are	better	suppressed	with	RNAi	methods	[35].	113 
	114 
However,	the	sub-cellular	localisation	of	the	majority	of	lncRNAs	has	not	been	well	characterised,	with	the	115 
localisation	of	relatively	few	being	experimentally	visualised.	Single	molecule	RNA	fluorescence	in	situ	116 
hybridisation	has	now	been	used	to	give	high	resolution	data	for	the	distribution	of	lncRNAs	in	human	cells	117 
[34],	and	a	systematic	investigation	of	lncRNA	localisation	has	been	suggested	as	an	important	next	step	in	118 
expanding	our	understanding	of	their	function;	as	well	as	a	useful	way	to	shed	light	on	the	potential	119 
relevance	of	lncRNAs	to	a	particular	mechanism.	120 
 121 
LncRNA	in	human	disease	122 
 123 
LncRNAs	have	now	been	implicated	as	important	factors	linked	to	a	range	of	human	diseases.	The	broad	124 
range	of	biological	functions	of	lncRNAs	is	reflected	in	the	variety	of	different	pathologies	in	which	their	125 
aberrant	expression	is	thought	to	be	a	contributing	factor.	Many	lncRNAs	have	been	shown	to	either	be	126 
expressed	at	aberrant	levels	in	cancerous	cells	[36-67],	or	their	levels	shown	to	affect	the	growth	and	127 
behaviour	of	cancerous	cells	[46,	47,	49,	50,	52-56]	(Table	1).	This	has	prompted	speculation	that	if	better	128 
characterised,	this	class	of	genes	may	present	many	promising	biomarkers,	and	even	novel	potential	129 
therapeutic	targets.	We	cannot	comprehensively	cover	this	topic	within	the	scope	of	this	review,	and	point	130 
the	reader	to	a	comprehensive	review	of	the	topic	for	more	information	[57],	but	instead	demonstrate	this	131 
point	with	two	well	documented	examples,	below.	132 
	133 
MALAT1,	a	highly	conserved	mammalian	lncRNA,	has	been	found	to	be	overexpressed	in	human	134 
osteosarcoma	cells	and	cell	lines	[46,	47].	It	is	hypothesised	to	function	as	a	molecular	scaffold	for	135 
ribonucleoprotein	complexes,	acting	as	a	transcriptional	regulator	for	certain	genes.	Higher	levels	of	136 
MALAT1	have	been	shown	to	be	associated	with	“aggressive”	cancer	traits	such	as	increased	migration,	137 
metastasis,	and	clonogenic	growth	in	non-small	cell	lung	cancer	[36-38]	pancreatic	[58],	and	prostate	138 
cancer	cells	[39].	Indeed,	inducing	a	knockdown	of	MALAT1	in	osteosarcoma	cell	lines	inhibited	cell	139 
proliferation	and	invasion	[46,	47].	140 
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	141 
The	HOTAIR	lncRNA,	transcribed	from	an	antisense	Hox	gene,	plays	an	important	role	in	the	epigenetic	142 
regulation	of	genes	thought	to	be	due	to	its	interactions	with	the	Polycomb	Repressive	Complex	2	(PRC2)	143 
[43,	59],	although	recent	work	has	indicated	that	PRC2	recruitment	may	be	a	downstream	consequence	of	144 
gene	silencing,	rather	than	initiating	it	[68].	HOTAIR	is	thought	to	act	as	a	molecular	scaffold,	and	is	145 
required	for	histone	modification	of	particular	genes	across	different	chromosomes.	Higher	levels	of	146 
HOTAIR	have	been	found	in	colorectal	cancer	tissues,	and	are	associated	with	increased	tumour	invasion,	147 
metastasis,	vascular	invasion,	advanced	tumour	stage,	and	a	worse	prognosis	in	patients	[43,	44].	HOTAIR	148 
has	since	been	suggested	for	use	as	a	biomarker	for	the	progression	and	prognosis	of	certain	cancers	[44].	149 
A	Drosophila	homologue	for	HOTAIR	has	not	been	identified,	but	given	the	similarities	in	polycomb	150 
regulation	between	species,	it	is	likely	that	a	targeted	search	might	reveal	such	an	equivalent.	151 
	152 
Aside	from	cancer,	strong	evidence	now	exists	linking	certain	lncRNAs	to	certain	neurological	pathologies	153 
[60].	LncRNAs	have	been	shown	to	be	relevant	factors	in	amyotrophic	lateral	sclerosis,	multiple	sclerosis	154 
[61,	62],	Alzheimer’s	disease	[10,	63],	Huntington’s	disease	[64,	65],	and	Parkinson’s	disease,	among	others.	155 
For	example,	the	BACE1	antisense	transcript	(BACE1-AS)	regulates	mRNA	stability	of	BACE1,	a	key	enzyme	156 
in	Alzheimer’s	disease	pathology	[10].	This	subsequently	affects	amyloid-β	1-42	abundance,	the	increased	157 
expression	of	which	is	a	hallmark	of	Alzheimer’s	disease.	One	mechanism	by	which	lncRNAs	have	been	158 
hypothesized	to	impact	neurodegenerative	disease	is	through	their	induction	of	R-loop	formation	(which	159 
may	be	triggered	by	trinucleotide	repeat	expansion).	R-loops	have	been	shown	to	be	capable	of	controlling	160 
the	fate	of	neuroprotective	genes	[69],	and	are	thought	to	contribute	to	the	pathogenesis	of	fragile	X	161 
syndrome	and	Friedrich’s	Ataxia	[70,	71]	by	their	silencing	of	certain	genes.	Additionally,	work	in	S.	pombe	162 
and	Arabidopsis	has	suggested	that	R-loops	may	regulate	lncRNA	expression	[72,	73],	although	whether	this	163 
is	true	of	lncRNAs	linked	to	neurodegenerative	diseases	remains	unclear.	Trinucleotide	repeats	in	lncRNAs	164 
are	also	known	to	be	important	in	the	pathogenesis	of	SCA8,	by	production	of	toxic	noncoding	CUG	165 
expansion	RNAs	from	the	ataxin	8	opposite	strand	(ATXN8OS),	thought	to	cause	a	toxic	gain	of	function	at	166 
both	the	RNA	and	protein	level	[74,	75].		167 
	168 
Another	area	of	disease	in	which	lncRNAs	have	been	proven	relevant	is	cardiovascular	disease	[66,	67].	169 
Evidence	now	shows	that	lncRNAs	are	an	important	factor	in	susceptibility	to	coronary	artery	disease	and	170 
myocardial	infarction,	prognosis	in	recovery	from	myocardial	infarction,	cardiovascular	disease	mortality,	171 
and	heart	failure	[67].	Once	again	their	correlations	with	prognosis	and	susceptibility	have	placed	lncRNAs	172 
in	the	spotlight	as	a	promising	avenue	of	investigation	in	finding	novel	biomarkers.	173 
	174 
Interestingly,	Drosophila	lncRNAs	have	been	shown	hold	functional	roles	very	relevant	to	these	pathologies.	175 
Hsromega	[76-80]	and	bft	[81]	are	required	for	proper	apoptosis	process	and	cell	differentiation,	yar	[82]	176 
and	CRG	[83]	serve	regulatory	roles	in	the	nervous	system,	and	sclA	and	sclB	are	required	for	normal	177 
calcium	transients	and	cardiac	muscle	contractility	[19].	This	is	particularly	promising	given	that	these	links	178 
can	be	made	from	the	limited	pool	of	Drosophila	lncRNAs	that	have	been	experimentally	characterised.	179 
 180 
Molecular	functions	of	lncRNA	conserved	in	Drosophila	181 
 182 
LncRNAs	have	been	shown	to	function	via	a	wide	range	of	molecular	mechanisms,	falling	under	the	broad	183 
categories	of	signals,	molecular	decoys,	guide	RNAs,	or	scaffolds	[84].	Some	lncRNAs	have	convincingly	184 
been	shown	to	be	translated,	with	the	small	peptide	products	(smORFs)	having	important	biological	185 
functions	[14-19,	22-25].		Through	these	various	mechanisms	(Figure	1),	they	have	been	implicated	in	186 
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regulation	of	a	diverse	array	of	processes,	such	as	differentiation,	development,	cell	proliferation,	nervous	187 
system	function,	and	cardiovascular	function	in	both	Drosophila	and	humans,	despite	the	lack	of	sequence	188 
conservation	in	lncRNAs	across	species.	Importantly,	similarities	in	the	modes	of	action	of	lncRNAs	have	189 
been	found	at	the	molecular	level	between	organisms,	discussed	below.	190 
 191 
LncRNA	in	the	regulation	of	chromatin	structure	and	gene	expression	192 
 193 
One	of	the	most	extensively	studied	molecular	mechanisms	of	lncRNA	modes	of	action	is	their	role	in	sex	194 
chromosome	dosage	compensation	pathways.	Due	to	the	difference	in	the	number	of	X	chromosome	195 
copies	between	males	and	females,	there	exists	a	compensation	pathway	required	to	maintain	a	similar	196 
level	of	expression	for	genes	located	on	the	X	chromosome.	In	Drosophila,	this	is	achieved	by	197 
transcriptional	hyperactivation	of	the	single	copy	of	the	genes	in	males,	allowing	their	expression	at	198 
comparable	levels	to	that	given	by	the	two	copies	of	the	gene	found	in	females	[85].	In	humans,	by	199 
contrast,	the	genes	located	on	the	X-chromosome	in	human	females	are	partially	transcriptionally	200 
repressed,	giving	a	similar	level	of	expression	to	that	seen	in	males	[86].	201 
	202 
In	Drosophila,	the	RNA	on	the	X	genes,	roX1	and	roX2,	are	expressed	in	males,	and	regulate	the	assembly	of	203 
the	Male	Specific	Lethal	(MSL)	complex	in	Drosophila;	a	chromatin	modifier	that	functions	in	histone	204 
modification	[87-90].	The	recruitment	and	binding	of	MSL	proteins	by	high	affinity	sequences	on	the	205 
nascent	roX	transcripts	covering	the	X	chromosome	allows	the	assembly	of	the	active	MSL	complex,	which	206 
can	then	spread	in	cis,	allowing	chromatin	restructuring	and	hyperactivation	of	specific	regions	of	the	207 
chromosome.	208 
	209 
An	immediate	comparison	can	be	made	between	the	roX	genes	in	Drosophila,	and	lncRNAs	involved	in	the	210 
sex	chromosome	dosage	compensation	pathway	in	humans	and	other	mammals;	X-inactive	specific	211 
transcript	(Xist)	and	its	antisense	transcript,	Tsix.	Like	the	roX	genes,	Xist	coats	the	X	chromosome,	where	it	212 
regulates	chromatin	modifications,	with	consequent	effects	on	the	expression	of	particular	target	genes	213 
[91,	92].	Unlike	roX,	Xist	is	expressed	in	females,	and	regulates	the	inactivation	of	the	X	chromosome	by	214 
facilitating	the	initiation	and	stabilising	of	the	X	chromosome	inactivation	process	[86].	215 
	216 
Although	these	lncRNA	genes	differ	in	their	sequence,	there	are	striking	similarities	between	their	role	in	217 
specific	regulation	of	the	X-chromosome	and	the	molecular	mechanisms	by	which	they	are	thought	to	218 
achieve	this.	Interestingly,	a	subset	of	lncRNAs	involved	in	chromatin	looping,	called	topological	anchor	219 
point	RNAs	(tapRNAs),	have	been	identified	in	the	human	and	mouse	genomes,	with	conserved	zinc-finger	220 
motifs	capable	of	binding	DNA	and	RNA	[93].	Whether	these	are	conserved	in	Drosophila	has	not	yet	been	221 
studied,	but	given	the	involvement	of	lncRNAs	in	Drosophila	chromatin	regulation	so	far,	this	may	be	a	222 
promising	avenue	to	explore,	and	may	reveal	a	wider	conservation	of	this	class	of	lncRNA	chromatin	223 
regulators.	224 
	225 
LncRNAs	in	the	production	of	small	peptides	226 
 227 
The	Drosophila	sarcolamban	(scl)	gene,	originally	classified	as	a	lncRNA	pncr003	[94],	is	transcribed	into	a	228 
992	base-pair	mRNA,	which	is	translated	to	produce	two	related	peptides	of	less	than	30	amino	acids	[19].	229 
The	scl	gene	is	expressed	in	muscle	cells,	and	scl	null	mutants	show	arrhythmic	cardiac	contractions,	a	230 
phenotype	produced	by	abnormal	intracellular	calcium	levels	in	contracting	muscle	cells	[19].	231 
	232 
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Interestingly,	the	scl	genes	were	found	to	have		homologues	in	humans,	namely	sarcolipin	(sln)	and	its	233 
longer	paralogue,	phospholamban	(pln),	encoding	peptides	of	31	and	52	amino	acids	respectively	[19].	234 
Phylogenetic	analysis	suggests	that	these	genes	belong	to	the	same	gene	family,	derived	from	a	single	235 
ancestral	gene,	conserved	for	more	than	550	million	years.	Furthermore,	their	function	also	seems	to	be	236 
conserved,	with	Sln	and	Pln	regulating	calcium	transport	in	mammalian	muscle	cells,	via	dampening	of	237 
Sarco-endoplasmic	Reticulum	Ca2+	adenosine	triphosphate	(SERCA)	pump	function.	Scl	peptides	were	able	238 
to	colocalise	and	interact	with	Drosophila	SERCA.	Exogenous	expression	of	the	human	Pln	and	Sln	peptides	239 
in	Drosophila	scl	mutant	muscle	cells	were	sufficient	to	rescue	muscle	function.	Importantly,	aberrant	levels	240 
of	Sln	in	humans	have	been	linked	to	heart	arrhythmias	[95].	Regulation	of	SERCA	by	micropeptides	241 
(encoded	by	lncRNAs)	has	been	extensively	exploited	in	mammals;	with	tissue	specific	positive	and	negative	242 
regulators	being	found	[22,	96,	97].	In	addition,	the	number	of	characterized	lncRNA	genes	encoding	243 
micropeptides	is	rapidly	increasing,	with	roles	found	in	a	myriad	of	essential,	conserved	cellular	functions,	244 
from	phagocytosis	[17]	and	cellular	motility	[98]	to	RNA	degradation	[18].	Thus,	these	examples	show	that	245 
lncRNAs	that	produce	biologically	relevant	peptides	may	be	conserved	in	structure,	function,	and	relevance	246 
to	pathologies	between	humans	and	Drosophila	[19,	22].	247 
	248 
Future	directions	249 
 250 
As	previously	shown	in	sarcolamban,	proving	the	protein-coding	potential	of	lncRNAs	is	a	painstaking	251 
process,	and	an	extremely	difficult	topic	to	broach;	with	genes	having	previously	been	catalogued	as	“non-252 
coding”	by	arbitrary	rules.	Definitively	showing	the	translation,	or	lack	thereof,	of	an	RNA	using	253 
experimental	techniques	can	be	an	arduous	process,	making	this	approach	impractical	to	apply	to	the	254 
entire	catalogue	of	identified	lncRNAs.	Ribosome	profiling	(in	which	a	protease	digestion	is	used	to	degrade	255 
RNA	not	protected	by	a	bound	ribosome,)	and	polysome	profiling	(where	RNAs	are	separated	by	the	256 
number	of	ribosomes	that	are	attached	to	different	transcripts)	have	been	used	to	provide	a	translational	257 
snapshot	for	several	lncRNAs	so	far.	This	data	has	given	a	profile	for	lncRNA	translation,	but	the	threshold	258 
for	significant	translation	is	difficult	to	define	in	a	non-arbitrary	fashion.	Therefore,	use	of	model	organisms	259 
to	determine	the	biological	function	of	any	particular	lncRNA	remains	crucial	to	gaining	a	meaningful	260 
understanding	of	the	function	of	these	molecules.	A	thorough	and	processive	approach	to	clarifying	this	261 
aspect	of	the	gene	class,	as	well	as	standardising	measures	and	cut-offs	for	translational	activity	is	an	262 
important	priority	for	those	in	the	field.	263 
	264 
Bioinformatic	approaches	to	elucidating	the	possible	biological	functions	of	lncRNAs	are	also	being	265 
developed,	although	this	method	is	not	without	its	difficulties.	Due	to	the	poor	sequence	conservation	266 
characteristic	of	lncRNAs,	standard	approaches	used	to	identify	biologically	relevant	transcripts	by	their	267 
conservation	within	and	across	species	are	significantly	less	effective	within	this	gene	class.	However,	268 
recent	work	has	noted	distinctive	selection	patterns	in	lncRNAs	based	on	secondary	structure	[99],	which	269 
may	be	of	help	in	future	analyses.	270 
	271 
To	conclude,	we	suggest	that	the	studies	currently	being	carried	out	on	lncRNA	in	Drosophila	should	be	of	272 
interest	to	a	far	wider	audience	than	just	fly	geneticists,	having	shown	that	as	a	model	organism,	Drosophila	273 
is	a	logical	choice	both	for	better	characterising	this	gene	class,	and	for	precursor	studies	to	highlight	genes	274 
and	mechanisms	that	can	be	carried	forward	into	more	expensive	and	laborious	large	animal	and	human	275 
work.	The	superb	annotation	of	the	Drosophila	genome	and	transcriptome,	coupled	with	further	increases	276 
in	RNA-sequencing	data	available,	will	provide	a	candidate	pool	of	lncRNAs	for	a	rapid	functional	277 
characterization	(using	the	sophisticated	genetic	tools	available	in	Drosophila).	Therefore,	further	lncRNA	278 
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studies	in	Drosophila,	of	a	suitably	high	calibre,	are	likely	to	provide	us	not	only	with	a	better	understanding	279 
of	the	basic	science	behind	this	gene	class,	but	promise	to	highlight	potential	biomarkers,	elucidate	genetic	280 
mechanisms	behind	a	range	of	diseases,	and	perhaps	provide	novel	targets	for	next	generation	281 
therapeutics.	282 
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Figures	562 
	563 
Table	1)	A	table	summarising	the	lncRNAs	linked	to	various	kinds	of	cancer,	as	covered	in	this	review.	564 

	565 

	 	566 

lncRNA Associated disease Reference 
MALAT1 Osteosarcoma [46, 47] 

Non-small cell lung cancer [36-38] 
Prostate cancer [39] 
Pancreatic cancer [58] 

HOTAIR Colorectal cancer [43, 44] 
EWSAT1 Ewing sarcoma [53] 
HOTTIP Osteosarcoma [52] 
HIF2PUT Osteosarcoma [54] 
ANCR Osteosarcoma [55] 
TUSC7 Osteosarcoma [50] 
FGFR3-AS1 Osteosarcoma [49] 
SNHG12 Osteosarcoma [56] 
TUG1 Osteosarcoma [51] 
H19 Wilms tumour [40] 

Gastric cancer [41, 42] 
LINC00152 Gastric cancer [45] 
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Figure	1)	A	cartoon	depicting	the	molecular	mechanisms	by	which	lncRNAs	can	function.		567 

a)	Some	lncRNAs	(red),	such	as	Xist	and	RoX1,	can	act	to	modulate	expression	of	a	certain	gene	by	binding	568 
to	a	transcription	modifier	or	chromatin	modifier	(purple).	b)	LncRNAs	(red)	such	as	HOTAIR	can	act	as	569 
molecular	scaffolds,	allowing	the	assembly	of	protein	complexes	(teal,	green,	dark	purple)	with	genetic	570 
regulatory	roles	e.g.	polycomb	complex	PRC2.	c)	LncRNAs	(red)	can	act	as	molecular	decoys,	to	sequester	571 
miRNAs	(orange)	or	proteins	(purple).	d)	Alternatively,	lncRNAs	(red)	can	act	as	molecular	decoys,	occluding	572 
or	removing	transcription	factors,	proteins,	or	RNAs	(purple)	from	their	functional	location.	e)	LncRNAs	573 
(red)	can	act	as	a	molecular	guide,	allowing	formation	of	ribonucleoprotein	complexes	(yellow)	to	specific	574 
target	sites.	f)	It	has	also	been	shown	that	lncRNAs	(blue	as	DNA,	red	as	RNA)	can	be	actively	translated	into	575 
functional	smORF	peptides	(orange)	such	as	the	SclA	and	SclB	peptides,	which	function	in	regulating	576 
calcium	transport	in	cardiac	muscle.	577 
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