University of Sussex
Browse
Alroqi, Abdurrhman Atig.pdf (5.27 MB)

Investigation of the heat and wear of aircraft landing gear tyres

Download (5.27 MB)
thesis
posted on 2023-06-09, 06:50 authored by Abdurrhman Atig Alroqi
In aircraft, the main landing gear wheels skid on the runway at the moment of touchdown because of high slip. A slipping tyre generates enough heat to melt its rubber. Melted rubber is easily eroded by the friction force between the tyre and runway; and part of eroded rubber stays on the runway, and other is burnt off as smoke. Since the early days of airplane use, a number of ideas have been patented to improve tyre safety and decrease the substantial wear and smoke during every landing by spinning the gear wheels before touchdown. In this thesis, there are three parts of research work. First part is to find the effectiveness of the technique of pre-spinning the wheel to reduce the tyre tread heat and wear, and then choosing the initial wheel rotation speed that prevent the tread rubber from melting temperature. For achieving this, a coupled structural – thermal transient analysis in ANSYS has been used to model a single wheel main landing gear as a mass-spring system. This model has been chosen to analyze the wheel’s dynamic behaviour and tyre tread temperature and wear during the short period from static to a matching free-rolling velocity in which the wheel is forced to accelerate by the friction between the tyre and ground. The tyre contact surface temperature and wear have been calculated for both the initially static and pre-spun wheels in order to compare the temperature and wear levels for different initial rotation speeds. In the second part, the required torque to spin the aircraft wheel to the required angular speed at approach speed has been calculated using ANSYS CFX, which is used to determine the wheel aerodynamic forces developed by simulation of fluid flows in a virtual environment. In the last part, several types of wind turbines have been simulated

History

File Version

  • Published version

Pages

201.0

Department affiliated with

  • Engineering and Design Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2017-06-20

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC