Load carrying capacity of a heterogeneous surface bearing

Thomas, Evan, Pascovici, Mircea D and Glovnea, Romeo P (2015) Load carrying capacity of a heterogeneous surface bearing. Friction, 3 (4). pp. 287-293. ISSN 2223-7704

[img] PDF - Published Version
Available under License Creative Commons Attribution-Non-Commercial.

Download (1MB)


It has been shown before that liquids can slip at a solid boundary, which prompted the idea that parallel-surfaces bearings can be achieved just by alternating slip and non-slip regions in the direction of fluid flow. The amount of slip at the wall depends on the surface tension at the liquid–solid interface, which in turn depends on the chemical state of the surface and its roughness. In the present study a heterogeneous surface was obtained by coating half of a circular glass disc with a coating repellant to glycerol. A rotating glass disc was placed at a known/calibrated distance and the gap was filled with glycerol. With the mobile surface moving from the direction of slip to non-slip region it can be theoretically shown that a pressure build up can be achieved. The pressure gradient in the two regions is constant, similar to that in a Rayleigh step bearing, with the maximum pressure at the separation line. The heterogeneous disc was placed on a holder supported by a load cell thus the force generated by this pressure increase can be measured accurately. Tests were carried out at different sliding speeds and gaps and the load carried was measured and subsequently compared with theoretical calculations. This allowed the slip coefficient to be evaluated.

Item Type: Article
Schools and Departments: School of Engineering and Informatics > Engineering and Design
Research Centres and Groups: Dynamics, Control and Vehicle Research Group
Subjects: T Technology > T Technology (General) > T0174.7 Nanotechnology
Depositing User: Romeo Glovnea
Date Deposited: 21 Jul 2017 14:25
Last Modified: 21 Jul 2017 14:29
URI: http://srodev.sussex.ac.uk/id/eprint/69387

View download statistics for this item

📧 Request an update