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Reheating with a composite Higgs boson
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The flatness of the inflaton potential and lightness of the Higgs boson could have the common

origin of the breaking of a global symmetry. This scenario provides a unified framework of Goldstone

inflation and composite Higgs models, where the inflaton and the Higgs particle both have a pseudo-

Goldstone boson nature. The inflaton reheats the Universe via decays to the Higgs and subsequent

secondzary production of other SM particles via the top and massive vector bosons. We find that

inflationary predictions and perturbative reheating conditions are consistent with cosmic microwave

background data for sub-Planckian values of the fields, as well as opening up the possibility of

inflation at the TeV scale. We explore this exciting possibility, leading to an interplay between

collider data cosmological constraints.

DOI: 10.1103/PhysRevD.94.045010

I. INTRODUCTION

Scalar fields are popular protagonists in cosmological

theories. They play chief roles in the leading paradigms

for important events, such as inflation and electroweak

symmetry breaking. However, it has been long known

that fundamental scalars suffer radiative hierarchy

problems: for theory to match observations, one

requires an unnatural cancellation of UV corrections.

In inflation, this radiative instability can be quantified

by the tension between the Lyth bound [1] on the slow

roll phase of the field, pushing towards Δϕ > Mp, and

the measurement of CMB anisotropies, which indicate

Λinf ≲ 1015 GeV. For electroweak symmetry breaking

(EWSB), one usually considers the large separation of

scales between the Higgs mass and the Planck scale as

an illustration, as the latter is where the theory should

be cut off for an elementary Higgs.

Here we will discuss the appeal of pseudo-Goldstone

bosons (pGBs) for the dynamical generation of scales in

both paradigms. The realization that Goldstone bosons can

solve hierarchy problems is not new: for EWSB, there is

popular branch of model building that goes by composite

Higgs theory which postulates a new strongly coupled

sector of which the Higgs is a bound state [2] (for a

review see [3]). The effective theory then has a cutoff, such

that the Higgs mass is not sensitive to effects above the

compositeness scale.

Likewise, in inflationary model building “Natural

Inflation” provides an inflaton candidate protected from

UV corrections using essentially the same mechanism with

an axionic GB [4]. Alas, vanilla Natural Inflation requires

trans-Planckian scales to predict the measured cosmic

microwave background (CMB) spectrum and thus has

questionable value as a valid effective theory.
1
In [12]

the idea of a pGB inflaton was generalized, and it was

shown there and in [13] that different models may realize

inflation compatible with data from the cosmic microwave

background (CMB) without the issues that the original

Natural Inflation has.

In this paper we will show how both mechanisms can be

unified, thus realizing radiative stability for both models in

a single simple setup. We will explore the minimal

symmetry breaking pattern that realizes a Higgs SUð2Þ
doublet and an inflaton singlet. We discuss both the

generation of an inflaton potential and reheating in this

model. Interestingly, both can be fully perturbative proc-

esses. The inflationary predictions are shown to be com-

patible with the latest CMB data by Planck [14] without the

necessity of introducing trans-Planckian scales in the

effective theory. After inflation the inflaton decays into

Higgs bosons, which subsequently decay into the Standard

Model particles. Importantly, we find that the question if

reheating can take place perturbatively crucially depends

on the CP assignment in the model.

We will finish by showing how the model naturally

connects to electroweak physics. The inflaton mass and

couplings to the Higgs could be of the same order, leading

to the possibility of looking for the inflaton through their

mixing with the Higgs.

In Fig. 1 we show a graphic of the relevant scales in our

model. The global symmetry is broken at the scale f, which
is below the Planck scale at which we expect a UV

1
There have been several proposals to explain the trans-

Planckian decay constant while maintaining the simple potential
and the explanatory power of the model. Among these are Extra-
natural Inflation [5], hybrid axion models [6,7], N-flation [8,9],
axion monodromy [10] and other pseudonatural inflation models
in supersymmetry [11].
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completion in the form of a theory of quantum gravity. The

scale of inflation is then expected to be parametrically

smaller than f, as we will show. The Coleman Weinberg

masses of the goldstone boson inflaton and Higgs are fixed

by CMB and electroweak data respectively. Likewise, the

values of the coefficients of the (self-)couplings in the

potential can be fixed in light of the data, modulo the scale

of inflation. This is a free parameter in our model. As usual

for slow roll inflation, it is most naturally found around the

grand unified theory scale (1015 GeV), but can be as low as

∼105 GeV if one allows for a degree of tuning.

Finally we would like to highlight some recent develop-

ments thatmay be of interest to the reader. In [15] a dynamical

solution to the electroweak hierarchy problem was proposed,

in terms of a Higgs boson coupling to an inflaton and an

axionlike field. Although critics have pointed out several

shortcomings, among which the necessity of a very large

number of e-foldings and the low cutoff (which makes one

arguably expect new physics around the EW scale) [16], the

scanning mechanism is a new facet worth investigating. As

the model behind the mechanism bares similarities with our

setup, it seems like a worthwhile exercise to look for a

realization in the present context.A second recent result that is

interesting in the present context is the observation in [17] that

the Higgs-inflaton coupling c4h
2η2 may drastically alter the

Higgs dynamics in the early Universe, thereby stabilizing the

electroweak vacuum. As we will see the coupling c4 will

automatically be present in our model.

II. THE LAGRANGIAN OF THE HIGGS

AND THE INFLATON

A. Inflaton-Higgs couplings for perturbative reheating

The condition that the inflaton field must decay com-

pletely into relativistic particles to complete the reheating

process dictates the interaction structure in a successful

theory of inflation. After the end of inflation, the inflaton

field η begins to oscillate about the minimum of its potential

with amplitudeΦðtÞ. The Universe is completely dominated

by the zero mode, hηðtÞi, which may be interpreted as a

condensate of nonrelativistic zero-momentum η particles of

mass mη. The condensate oscillation amplitude decays as

ΦðtÞ ∼ t−1 due to the Hubble expansion and due to inter-

actions with the Higgs field. Trilinear couplings, 1
2
σηh2, and

quartic couplings, 1

2
g2η2h2, with the Higgs are to be

expected on fairly general grounds, as we argue in the

following section. As wewill show in Sec. IV, provided that

the coupling constants σ; g2 and the amplitudeΦðtÞ are small

enough such that nonperturbative particle production proc-

esses are absent, the energy loss experienced by the con-

densate can be described by the Boltzmann equation

d

dt
ða3ρηÞ ¼ −

σ2Φ2
0
mη

64π
−
g4Φ4

0
mη

128πa3
; ð1Þ

where a is the scale factor and Φ0 is the initial amplitude

of the inflaton oscillations at the start of reheating.

The contribution from the quartic interaction decreases as

a−3 ∼ t−2, which, as is well known [18–20], poses a major

problem for theories which do not contain a trilinear

interaction. Specifically, since the Hubble rate decreases

as H ∼ a−3=2 ∼ t−1, volume dilution due to the Hubble

expansion takes place faster than the annihilation process

ϕϕ → χχ can drain energy from the condensate and so

reheating never completes. In order to successfully reheat

the universe, a trilinear coupling must be present. We will

use this result as a guiding principle when constructing the

Lagrangian for the composite Higgs model.

B. Symmetry breaking: The minimal coset

The inflaton and Higgs correspond to five scalar degrees

of freedom which could come from the breaking of SOð6Þ
to SOð5Þ or, equivalently SUð4Þ to Spð4Þ. This breaking
pattern is very popular in building models of composite

Higgs, as it preserves custodial symmetry.

The breaking gives rise to five Goldstone bosons, trans-

forming as a 5 of SOð5Þ. The most general vacuum which

breaks SOð6Þ → SOð5Þ ∼ SUð4Þ → Spð4Þ as shown in

Ref. [21] is given by
2

Σ0 ¼

0

B

B

B

@

0 eiα cosðθÞ sinðθÞ 0

−eiα cosðθÞ 0 0 sinðθÞ
−sinðθÞ 0 0 −e−iα cosðθÞ

0 −sinðθÞ e−iα cosðθÞ 0

1

C

C

C

A

ð2Þ

where α and θ are real angles. One recovers a well-known

choice of vacuum in Composite Higgs models [22] in the

limit α → mod ðπÞ and θ → mod ðπÞ.

FIG. 1. Relevant scales: pseudo-Goldstone bosons naturally

realize mass hierarchies. CMB data and constraints on perturba-

tive reheating allow us to relate the complete spectrum to the

symmetry breaking scale f and the Planck scale Mp.

2
The discussion in Ref. [21] assumes the presence of CP

conserving vacua, as well as CP breaking vacua, such that the
Pfaffian of the inflaton is real.
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In fact, the vacuum in which we have θ ¼ modðπÞ has an
enhanced custodial symmetry [21], as in this case the

unbroken generators generate SUð2Þ × SUð2Þ ⊂ Spð4Þ.
Likewise, the limit α ¼ modðπÞ parametrizes the conser-

vation of CP by the vacuum.

One can then parametrize the Goldstone bosons via the

field ΣðxÞ,

ΣðxÞ ¼ eiΠ
aðxÞTa

⊥
=
ffiffi

2
p

f
Σ0; ð3Þ

where ΠaðxÞ are the Goldstone fields with decay constant

f, corresponding to the broken SOð6Þ ≅ SUð4Þ generators

Ta
⊥. A linear combination of three of the Goldstone fields is

eaten by the Standard Model gauge fields such that the

corresponding generators can be recognized as their longi-

tudinal components. The two remaining Goldstone bosons

remain in the spectrum as massless scalar fields and couple

via the broken generators T4
⊥ and T5

⊥:
3

T4
⊥ ¼

�

0 σ2

σ2 0

�

; T5

⊥ ¼
�

cθe
iα12 −isθσ2

isθσ2 cθe
iα12

�

: ð4Þ

Expanding the matrix exponential, we obtain

ΣðxÞ ¼

0

B

B

B

B

B

B

B

B

B

B

@

cπ þ
ffiffi

2
p

fieiαcθsπη
ffiffiffiffi

π2a

p 0 0
i
ffiffi

2
p

fsπð−ih−sθηÞ
ffiffiffiffi

π2a

p

0 cπ þ
ffiffi

2
p

fieiαcθsπη
ffiffiffiffi

π2a

p i
ffiffi

2
p

fsπðihþsθηÞ
ffiffiffiffi

π2a

p 0

0
i
ffiffi

2
p

fsπðsθη−ihÞ
ffiffiffiffi

π2a

p cπ −
i
ffiffi

2
p

feiαcθsπη
ffiffiffiffi

π2a

p 0

i
ffiffi

2
p

fsπðih−sθηÞ
ffiffiffiffi

π2a

p 0 0 cπ −
i
ffiffi

2
p

feiαcθsπη
ffiffiffiffi

π2a

p

1

C

C

C

C

C

C

C

C

C

C

A

Σ0 ð5Þ

where we have suppressed space-time dependence of the

fields h ¼ hðxÞ and η ¼ ηðxÞ, and where we use the

shorthands

hðxÞ2þηðxÞ2¼π2a and sπ¼ sin

�

ffiffiffiffiffi

π2a
p

ffiffiffi

2
p

f

�

; cπ¼cos

�

ffiffiffiffiffi

π2a
p

ffiffiffi

2
p

f

�

sθ¼ sinðθÞ; cθ¼cosðθÞ: ð6Þ

We will further assume that gauging the theory breaks

SUð4Þ to the Standard Model group
4
SUð2ÞL ×Uð1ÞY and

Uð1Þη. This latter shift symmetry for η will assure that it

does not get a potential from gauge bosons. Then the

kinetic term becomes

f2

8
TrjDμΣj2 ¼

1

2

ðη∂μh − h∂μηÞ2
h2 þ η2

þ g2

4
h2
�

Wþ
μ W

−μ þ 1

cos2θw
ZμZ

μ

�

≈
1

2
ð∂μhÞ2 þ

1

2
ð∂μηÞ2 þ

1

2

ðh∂μhþ η∂μηÞ2
1 − h2 − η2

þ g2

4
h2
�

Wþ
μ W

−μ þ 1

cos2θw
ZμZ

μ

�

ð7Þ

where the following field redefinitions are made:

h2s2πf
2=π2a → h2 η2s2πf

2=π2a → η2

ð∂μhsπf=

ffiffiffiffiffi

π2a

q

Þ2 → ð∂μhÞ2ð∂μηsπf=

ffiffiffiffiffi

π2a

q

Þ2 → ð∂μηÞ2 ð8Þ

corresponding to dropping the operators with more than

four powers in the field (they will be effectively suppressed

by f). For the sigma model, there is an equivalence between

the original and rotated fields. However, the rotated fields

couple to gauge bosons as in (7) and are as such the

physically relevant choice.

At this level, the η and h fields are true Goldstone

bosons. (Small) explicit breaking of the symmetry will

generate a Coleman-Weinberg contribution to the scalar

potential, via gauge and Yukawa interactions. This poten-

tial accounts, then, for resummations of loops of gauge

bosons and fermions. Rather than considering the fully

generic case, we can use the information from the previous

section as prior information about what a Lagrangian which

gives perturbative reheating will look like. In particular, the

necessity of terms with odd powers of the singlet η in the

scalar potential implies that the singlet η has specific

transformation properties under CP that differ from the

composite Higgs model. This can be understood in the

following way: if we for a moment assume that CP is

unbroken, we can set α ¼ 0. As we will see, the way we

parametrize the coupling between η and (Dirac) fermions

can schematically be written as

3
Here we use generalized expressions from Ref. [21]; obtained

by assuming the general vacuum [Eq. (A17)] in the rotation
Eq. (B25).

4
Here we do not address the color group SUð3Þc.

REHEATING WITH A COMPOSITE HIGGS BOSON PHYSICAL REVIEW D 94, 045010 (2016)

045010-3



ηF̄ðceven þ icoddγ5ÞF: ð9Þ

Clearly, for codd ¼ 0, η behaves as a scalar, such that the

trilinear interaction ηh2 is allowed by the symmetry.

However in the composite Higgs case (codd ≠ 0) where

η behaves as a (partial) pseudoscalar, the term ηh2

breaks CP.
In contrast, the breaking of the enhanced custodial

symmetry by taking θ ≠ 0 does not have such a direct

impact on the predictions for perturbative reheating.

It is expected to give rise to mass mixing, i.e. terms of

the form V∋ciηh. Deviations from custodial symmetry in

the Higgs sector are rather constrained by low-energy

data and it will therefore be practical to assume θ ¼ 0 in

the following. This choice corresponds to identifying

the Higgs with the bi-doublet under the subgroup

SOð4Þ ≅ SUð2ÞL × SUð2ÞR, and η with the singlet:

1 ⊕ 4 ¼ ð1; 1Þ ⊕ ð2; 2Þ.
As the scalar η does not couple to the SUð2ÞL gauge

group, see Eq. (7), couplings to gauge bosons do not help

with generating a cubic term. The difference in dynamics

between the different vacua has to come from the couplings

to fermions.

As an example, we implement the fermions in a 6 of

SU(4) [corresponding to the vector representation of

SO(6)]. Other options for fermion representations, such

as 4 and the 10, have their own difficulties to address [22].

The 6 of SU(4) decomposes as ð2; 2Þ ⊕ ð1; 1Þ ⊕ ð1; 1Þ
under SUð2ÞL × SUð2ÞR, such that we can implement the

fermions as [22]

Ψq¼
1

2

�

0 Q

−QT 0

�

Ψu¼Ψþ
u þΨ−

u Ψ�
u ¼ 1

2

��U 0

0 U

�

ð10aÞ

Ψq0 ¼
1

2

�

0 Q0

−Q0T 0

�

Ψd¼Ψ
þ
d þϵdΨ

−
d Ψ�

d ¼
1

2

��D 0

0 D

�

ð10bÞ

where Q ¼ ð0; qLÞ, Q0 ¼ ðqL; 0Þ, U ¼ uRiσ2 and

D ¼ dRiσ2. The ϵu;d are complex free parameters defining

the embedding of the quarks into the singlets, and con-

secutively the CP-assignment of η. In the limit jϵu;dj ¼ 1

the fermions have definite charges under Uð1Þη and it is

therefore expected that η is massless.

The coupling of Σ to fermions will be of the form

Leff ¼
X

r¼q;u;q0;d

½Πr
0
Tr½Ψ̄rpΨr� þ Π

r
1
Tr½Ψ̄rΣ�pTr½ΨrΣ

†��

þMuTr½Ψ̄qΣ�Tr½ΨuΣ
†� þMdTr½Ψ̄q0Σ�Tr½ΨdΣ

†�:
ð11Þ

C. Composite Higgs limit: CP assignment

in the fermion sector

As we show in the Appendix, loops of fermions and

gauge bosons will generate a Coleman-Weinberg potential

at one loop, which will be of the form [22]

Vðκ; hÞ ¼ a1h
2 þ λh4 þ jκj2ða2 þ a3h

2 þ a4jκj2Þ where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − η2 − h2
q

þ iϵtη ð12Þ

where ai are dimensionful constants dependent on the form

factors of the UV theory as given in the Appendix. Here ϵt
is the parameter that defines the embedding of the up-type

fermion in the global symmetry and determines the mass

and CP assignment of η, as we demonstrated above. It is

easy to see that the scenario in which ϵt is real is distinctly

different from the case in which it can be complex. For

ϵt ∈ R, we find that η behaves like a pseudoscalar [codd ≠ 0

and ceven ¼ 0 in (9), and we can expand (12) to obtain the

following CP and custodially symmetric potential:

Vðη; hÞ ¼ m2

hh
2 þ λhh

4 þm2
ηη

2 þ ληη
4 þ c4η

2h2: ð13Þ

Here, in terms of the parameters above we have defined

m2

h ¼ ða1 þ a3 − a2 − a4Þ; ð14aÞ

λh ¼ ðλ − a3 þ a4Þ; ð14bÞ

m2
η ¼ ð1 − ϵ2t Þð−a2 − a4Þ; ð14cÞ

λη ¼ ð1 − ϵ2t Þ2a4; ð14dÞ

c4 ¼ ð1 − ϵ2t Þð−a3 þ 2a4Þ; ð14eÞ

and as announced the trilinear term is absent. If we allow

for complex coupling to fermions,

ϵt ¼ ϵREt þ iϵIMt ð15Þ

where ϵIMt ≠ 0, we will find η has ceven ≠ 0 in (9).
5
In this

case the scalar potential will include a trilinear interaction

and a tadpole for η, both of which multiply ϵIMt ,

V ¼ ctadηþm2
ηη

2 þ ~cηη
3 þ ληη

4 þm2

hh
2 þ λhh

4

þ c3ηh
2 þ c4η

2h2 ð16Þ

where

~cη ¼ 4a4ϵ
IM
t ð1 − ðϵREt Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − η2 − h2
q

; ð17aÞ

5
In the boundary case ϵREt ¼ 0, ϵIMt ≠ 0 η behaves like a scalar.
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c3 ¼ ð4a4 − 2a3ÞðϵIMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − η2 − h2
q

; ð17bÞ

c4 ¼ ða3 − 2a4ÞðϵREÞ2 − 4a4ðϵIMÞ2 þ 2a4 − a3; ð17cÞ

and the other coefficients remain as above. The tadpole and

trilinear interaction term violate CP for ϵREt ≠ 0. We may

shift away the tadpole ctadη by an appropriate vacuum

expectation value vη, which solves

ctad þ 2m2
ηvη þ 3~cηv

2
η þ 4ληv

3
η ¼ 0: ð18Þ

This will also shift the parameters,

m2
η → m2

η þ 3~cηvη þ 6ληv
2
η; ð19aÞ

~cη → ~cη þ 4vηλη; ð19bÞ

m2

h → m2

h þ c3vη þ c4v
2
η; ð19cÞ

c3 → c3 þ 2c4vη: ð19dÞ

In terms of the shifted parameters the potential becomes

V¼m2
ηη

2þ ~cηη
3þ ληη

4þm2

hh
2þλhh

4þc3ηh
2þc4η

2h2:

ð20Þ

This potential has the required form to be a suitable

candidate for inflation followed by perturbative reheating.

D. Spontaneously broken CP by the inflaton (α ≠ 0)

For the composite Higgs vacuum discussed above α ¼ 0

and CP is unbroken by the vacuum. Here we relax this

constraint, and consider the CP breaking vacuum with CP
breaking in the model to

0 < α ≤ 1=2π ð21Þ

For α ¼ 1=2π both fields have a quadratic term and do not

interact. For the open interval, 0 < α < 1=2π, we indeed

find the same potential as at the end of the previous sector,

to fourth order in the fields:

Vðη; hÞ ¼ m2
ηη

2 þ ~cηη
3 þ ληη

4 þm2

hh
2 þ λhh

4

þ c3ηh
2 þ c4η

2h2: ð22Þ

The coefficients are in general nonzero, except for at

α ¼ 1=4π. We refer the reader to the Appendix for a

discussion, and an example computation. Importantly, in

these vacua we are not required to introduce explicit CP
breaking by a complex fermion representation to get the

η-odd terms as we were for α ¼ 0, that is, we may have

either ∈ R or ∈ C.

In these vacua the η field couples directly to fermions as

ðηūRpuRÞ ∈ L; ð23Þ

an effect proportional to ð1−2Þ. Indeed, is seen that the odd
powers of η in the potential (which includes the trilinear

coupling) are multiplied by ð1−2Þ and ðb1 − b2
2Þ for some

constants bi (from the linear and the second order expan-

sion of the logarithm respectively). This combination plays

the role that ϵIMt played in the previous section, as an order

parameter of CP breaking.

As expected from periodicity, the two quadrants

0 < α < 1=2π and 1=2π < α < π are equivalent, modulo

a redefinition of the fields
6
:

η → −η and h → −h: ð24Þ

We demonstrate this explicitly in the Appendix.

We will finish this section with a comment on the

appearance of domain walls [23]. As we introduced the

possibility of breaking CP spontaneously, one may be

worried that these will be present, and become energetically

important. However, if the vaccuum breaks CP sponta-

neously, it does it at the scale of symmetry breaking f. But,
as we will see in the next section, we expect inflation to

occur below this scale, Λinf < f, hence the domain walls

will be diluted during inflation.

III. INFLATION

In this section we study inflation due to the field η. As the

scale of inflation will turn out to be much larger than

the electroweak scale, the Higgs field would be stabilized at

the minimum of its potential during inflation, and so we set

h ¼ 0. Hence, we neglect the dynamics of the Higgs field

during inflation, and the model is effectively single field.

We can canonically normalize the inflationary sector via the

field redefinition

ϕ ¼ f arcsinðη=fÞ; ð25Þ

such that the scalar potential becomes, in the unbroken CP
limit,

VCPðϕÞ ¼ m2
ηf

2 sinðϕ=fÞ2 þ ληf
4 sinðϕ=fÞ4: ð26Þ

This is equivalent to the Goldstone inflation [13] potential

VðϕÞ ¼ Λ4ðsin2ðϕ=fÞ − ~β sin4ðϕ=fÞÞ; ð27Þ

if we identify

6
Because of custodial symmetry, which shows up here as a Z2

symmetry for h, h → −h is a symmetry over the whole range. The
latter substitution is therefore made for free.
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ληf
4 ¼ − ~βΛ4 and m2

ηf
2 ¼ Λ4:

In Fig. 2 we show a plot of the form of the potential, for

the moment with ~cη=m
2
η ¼ 0. This model would lead to

inflation with f < Mp (where Mp is the reduced planck

mass) and spectral index within the bounds allowed by

Planck (at 2σ) [14],

ns ¼ ½0.948–0.982� for ~β ≲ 1=2 → ληf
2 ≳ −1=2m2

η:

As in Goldstone inflation, the sensitivity to the exact value

of ~β that predicts the right spectral index is a function of

ðf=MpÞ2:

4 × 10−4

�

f

Mp

�

2

< δ ~β < 3 × 10−3

�

f

Mp

�

2

where

δ ~β ¼ 1=2 − ~β: ð28Þ

As in [13], this feeds into the amount of tuning needed in

the model, which we will discuss below.

Likewise, the model has the initial condition for the start

of slow roll as a function of ðf=MpÞ2,

ϕi − 1=2πf ¼ ð0.020–0.025Þ
�

f

Mp

�

2

Mp: ð29Þ

As in all models of Goldstone inflation, the tensor to scalar

ratio will also be subject to fine-tuning, but its value is

generically very small:

r ≈ 10−6ðf=MpÞ4: ð30Þ

A measurement of CMB tensor modes would fix the

symmetry breaking scale f (as well as the scale of inflation,

as usual) in our model.

In the CP breaking fermion implementation described

above there is an additional term

V
CP
ðϕÞ ¼ ~cηsin

3ðϕ=fÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − sin2ðϕ=fÞ
q

¼ ~cηsin
3ðϕ=fÞ cosðϕ=fÞ: ð31Þ

This term imposes modulations on the potential with period

πf, as seen from Fig. 2. Increasing the CP breaking in the

model corresponds to increasing the value of the tensor to

scalar ratio r. The bound r < 0.1 gives

~cη ≤ Oð10−1Þm2
ηf

2: ð32Þ

The effect of theCP breaking term is illustrated for an order

of magnitude below this bound in Fig. 3.

The scale of inflation is related to the amplitude of the

scalar power spectrum, as measured by Planck [14],

As ¼
Λ4

24π2M4
pϵ

¼ e3.089

1010
ð33Þ

where ϵ is the first slow roll parameter. For our case

[Eq. (30)], where r ¼ 16ϵ in the slow roll approximation)

this implies

Λ ≈ 1015

�

f

Mp

�

GeV: ð34Þ

Interestingly, we can see from this relation that the onset of

inflation is related to the scale of the symmetry breaking:

Λ ∼ 10−3f. That is, fitting to the CMB data implies a mass

gap of roughly 3 orders of magnitude between the two

scales.

A. Tuning

Following convention, tuning can be expressed numeri-

cally using the Barbieri-Giudice [24] parametrization as

follows:

FIG. 3. Model predictions in the ns-r plane: Planck 2015 2σ

bounds [14]. For convenience, we have set Mp ¼ 1 here. In

green: the TT spectrum and polarization data at low-l (lowP); in

pink the combined spectra TT, TE, EEþ lowP.
FIG. 2. Form of the potential: Here ληf

2 ≳ −1=2m2
η.
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Δ ¼
�

�

�

�

∂ log ns

∂ log ~β

�

�

�

�

¼
�

�

�

�

~β

ns

∂ns

∂ ~β

�

�

�

�

≈ ½8.1–8.5�
�

f

Mp

�

−2

: ð35Þ

See Fig. 4 below. It is seen that the parameters are sensitive

to the square of the ratio of scales.

However, the relation ~β ≈ :5 can be seen as a conse-

quence of a symmetry in the sector responsible for the

breaking of the global symmetry SOð6Þ=SOð5Þ. This

would agree with naturalness in the ’t Hooft interpretation.

In this case the fact that the small deviation δ ~β is sensitive to

the relation of the scales f andMp implies that a symmetry

in the sector is broken at the same time as SOð6Þ=SOð5Þ.
In [13] we related this symmetry to the spectrum of

resonances in the composite sector.

When we identify the other scalar resonance with the

Higgs, we introduce a second source of tuning, between the

electroweak scale v and the symmetry breaking scale f. This
source of tuning coincideswith the tuning in theminimal and

the next tominimal compositeHiggsmodel, and is a function

of ðv=fÞ2; see for instance [2]. As this is a tuning of the

parameters in the Higgs potential, which are independent

combinations of the input parameters (the form factors,

vacuum angles, and fermion representation), this tuning is

independent and additive. The Barbieri-Giudice function

will then take the form Δtotal ¼ c1ðMp=fÞ2 þ c2ðf=vÞ2,
where c1 and c2 are Oð1Þ constants. This suggests

that the Barbieri-Giudice function is minimized for

Δtotalðf2 ¼
ffiffiffi

4
p

c1=c2MpvÞ ∼ 1016, which is a large, but

technically natural fine-tuning.

IV. REHEATING

At the end of inflation, the inflation field approaches,

overshoots and begins to oscillate about the minimum of its

potential. At this stage, the Universe is completely domi-

nated by the zero mode of the oscillating inflaton field

hϕðtÞi. Interactions with the Higgs field, which we have so

far neglected, lead to dissipation which drains energy from

hϕðtÞi, and excites relativistic Higgs particles. We refer to

these collective processes as reheating (see e.g., [18,25] for

reviews). The calculation that we present in the below

section is semiclassical: we treat the inflaton condensate as

a classical source in the mode equations for the quantum

fluctuations of the Higgs field. This treatment neglects

many of the complicated processes which are present

during the reheating phase, such as thermal corrections,

rescatterings of the produced Higgs particles on the inflaton

condensate, and the thermalization process. As we discuss

at the end of this section, these effects can in general

modify the rate of decay of the condensate. Our approach

does however provide an estimate for the perturbative

decay rate of hϕðtÞi into Higgs particles, and allows us

to estimate the reheating temperature TR.

A. Equations of motion

To begin, we study the classical inflaton background. As

a first approximation, we neglect interactions with the

Higgs field and set h ¼ 0. As before, the inflaton sector can

be canonically normalized through the field redefinition

ηðtÞ ¼ f sinðϕðtÞ=fÞ. We neglect excitations of the inflaton

field, δϕ, and so for simplicity label the zero mode ϕðtÞ≡
hϕðtÞi which obeys the usual Klein Gordon equation:

ϕ̈þ 3H _ϕþ ∂V

∂ϕ

�

�

�

�

h¼0

¼ 0; ð36Þ

where the potential is given by Eq. (27). After inflation, the

inflaton field approaches, overshoots and begins to oscillate

about its minimum. This region of the potential, where

ϕ=f ≪ 1, is essentially quadratic:

Vh¼0ðϕÞ ≈
1

2
m2

ϕϕ
2; m2

ϕ ≡ 2m2
η ≈ 2 × 10−14

�

f

Mp

�

2

M2
p;

ð37Þ

where we have used the Planck constraint on the amplitude

of scalar power spectrum [Eq. (34)] to determine the mass

mϕ in terms of the scale f. To describe the oscillations,

notice that Eq. (36) can be written as

d2

dt2
ða3=2ϕÞ þ

�

m2

ϕ −

�

9

4
H2 þ 3

2

_H

��

ða3=2ϕÞ ¼ 0: ð38Þ

At the onset of oscillation, m2

ϕ ≫ H2, _H and under this

condition, Eq. (38) has the damped sinusoidal solution:

ϕðtÞ ¼ Φ0

a3=2ðtÞ sin ðmϕtþ ϑÞ; Φ0 ≈ 0.6

�

f

Mp

�

Mp: ð39Þ

The numerical value for the initial amplitude, Φ0, was

obtained by matching the above solution with an exact

numerical integration of Eq. (36)—see the left-hand panel

of Fig. 5 for illustration. Subscript zero denotes evaluation

at the onset of oscillations (start of reheating), and we set

0

5

10

15

–8 –6 –4 –2 0

Log10 (f/Mp)

L
o
g 1

0
∆

FIG. 4. Fine-tuning: numerically defined as in (35).
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a0 ¼ 1. The scale factor, averaged over many oscillations,

grows as aðtÞ ∼ t2=3, while the energy density of the field

decreases as

ρϕðtÞ ¼
1

2

_ϕ2ðtÞ þ 1

2
m2

ϕϕ
2ðtÞ≃

m2

ϕΦ
2
0

2a3
: ð40Þ

We see that the vacuum energy of the inflaton field exists as

spatially coherent oscillations, which can be interpreted as a

condensate of nonrelativistic zero-momentum ϕ particles.

The amplitude of the oscillations decay due to the Hubble

expansion and also due to production of Higgs particles.

We can obtain an estimate for this particle production rate

by considering propagation of Higgs fluctuations, hk, in the
background of the classical inflaton condensate.

We begin by canonically normalizing the Higgs kinetic

sector [given by Eq. (7)] by performing the following field

redefinition:

∂μχðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − η2ðtÞ
f2 − η2ðtÞ − h2ðxÞ

s

∂μhðxÞ; ð41Þ

such that

hðxÞ ¼ f cosðϕðtÞ=fÞ sin χ̂ðxÞ; χ̂ðxÞ≡ χðxÞ
fcos2ðϕðtÞ=fÞ :

ð42Þ
We will henceforth drop the space-time labels and write

χ ¼ χðxÞ, ϕ ¼ ϕðtÞ: it is to be understood that the Higgs is

inhomogeneous, while the inflaton condensate is homo-

geneous, and described by Eq. (39). Under these field

redefinitions we obtain

L ¼ −
1

2
∂μχ∂

μχ −
1

2
½1þ sin2ðϕ=fÞtan2χ̂�∂μϕ∂

μϕ

− ½sinðϕ=fÞ tan χ̂�∂μχ∂
μϕ − Vðϕ; χÞ; ð43Þ

where the potential is given by Eq. (22). The canonically

normalized Higgs equation of motion is obtained by

varying the action with respect to χ:

χ̈ −
∇2

a2
χ þ 3H _χ ¼ −

∂Vðϕ; χÞ
∂χ

þ sinðϕ=fÞ tan χ̂ ∂VðϕÞ
∂ϕ

�

�

�

�

h¼0

−
_ϕ2

f2
Kðϕ; χÞ; ð44Þ

where

Kðϕ; χÞ≡ f sin χ̂cos2χ̂cos4ðϕ=fÞ þ 2χ cos χ̂sin2ðϕ=fÞ − f sin χ̂ cosðϕ=fÞ þ f sin χ̂cos3ðϕ=fÞ
cos3ðϕ=fÞcos3χ̂ : ð45Þ

In deriving Eq. (44), we have used Eq. (36) to eliminate ϕ̈

which arises from the variation of the action. The task at

hand is to solve Eq. (44) given the inflaton background

Eq. (39). This is made tractable by expanding the right-

hand side of Eq. (44) about ϕ=f ¼ 0, and about χ=f ¼ 0:

χ̈ −
∇2

a2
χþ 3H _χ ≈−

�

m2
χ þ σϕþ g2ϕ2þ

_ϕ2

f2

�

χþ…; ð46Þ

where we have defined

m2
χ ≡ 2m2

h; σ ≡ 2c3; g2 ≡ 2½m2

h=f
2 −m2

η=f
2 þ c4�:

ð47Þ
The expansion in ϕ=f is permitted since the amplitude of

the inflaton oscillations are small with respect to the scale

f: Φ0=a
3=2ðtÞ ∼ 0.6f=a3=2ðtÞ. The expansion in χ=f is

permitted since we assume that the Higgs field is stabilized

at the minimum of its potential throughout inflation,

hχðx; tÞi ¼ 0. Furthermore we consider perturbative reheat-

ing only: we restrict ourselves to regions of parameter space

where the coupling constants σ and g2 are small enough

such that resonant enhancement of Higgs modes is not

possible. This ensures that χ ≪ f throughout reheating. We

will discuss the conditions for perturbative reheating

shortly. Notice that inflaton mass, m2
η, and the Higgs mass,

m2

h, enter the definition of the coupling g2: their presence

may be traced back to canonical normalization of the Higgs

kinetic term.

For the analysis of Eq. (46) it is convenient to define a

comoving field

FIG. 5. Left: comparison between the exact numerical solution

of Eq. (36) and the approximate analytic solution Eq. (39). Right:

comparison between the exact “mass” [the coefficient of the term

linear in χ of Eq. (44)] and M2

effðtÞ as defined in Eq. (53).
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μkðτÞ≡ aðτÞχkðτÞ; ð48Þ

and to work in conformal time, which is related to cosmic

time by an integral over the scale factor:

tðτÞ ¼
Z

τ

τ0

dτ0aðτ0Þ: ð49Þ

According to standard arguments, we may decompose this

field into creation and annihilation operators:

μðτ;xÞ ¼
Z

d3k

ð2πÞ3=2 ½akμkðτÞ þ a†−kμ
�
kðτÞ�eik·x; ð50Þ

where the mode functions obey

μ00kðτÞ þ ω2

kðτÞμkðτÞ ¼ 0; ð51Þ

and where a prime denotes differentiation with respect to

conformal time. The time dependent frequency is given by

ω2

kðτÞ≡ k2 þ a2M2

effðτÞ −
a00

a
;

a00

a
¼ a2

6M2
p

ðρϕ − 3PϕÞ;

ð52Þ

where Pϕ ≃ 0 is the pressure of the field, and we have

defined the effective mass:

M2

effðtÞ≡m2
χ þ

σΦ0

a3=2ðtÞ sinðmϕtþϑÞþ g2Φ2
0

a3ðtÞ sin
2ðmϕtþϑÞ

þ
Φ2

0
m2

ϕ

f2a3ðtÞcos
2ðmϕtþϑÞ: ð53Þ

The final term on the right-hand side of M2

effðtÞ is the

leading contribution from _ϕ2=f2: we have neglected terms

which decay faster than a−3. In the right panel of Fig. 5, we
plot the effective mass against the coefficient of the term

linear in χ of Eq. (44), which demonstrates the accuracy of

this expansion. Equations of the type (51), with time

dependent mass (53) have been extensively studied in

the context of (p)reheating after inflation. For certain

regions of fσ; g2;Φ0g parameter space, the mode functions

experience exponential growth as parametric instability

develops, a phenomenon known as parametric resonance

[18,20,26,27]. To be specific, when any one of the three

terms in M2

effðtÞ is dominant, the oscillator equation (51)

may be written

d2μk

dz2
þ ½Ak − 2qi cosð2zÞ�μk ¼ 0; ð54Þ

q0 ≡
Φ2

0

4f2a3
; q3 ≡

σΦ0

m2

ϕa
3=2

;

q4 ≡
g2Φ2

0

4m2

ϕa
3
; Ak ≡

k2 þm2
χ

m2

ϕa
2

þ 2qð0;4Þ; ð55Þ

following a time redefinition of the form z≡mϕtþ const.

Here we have ignored terms proportional to H=mϕ (recall

that H ≪ mϕ during reheating). Equation (54) is known as

the Mathieu equation, which is known to possess instability

bands for certain values of Ak and qi. For qi ≫ 1, a large

region of parameter space is unstable and broad parametric

resonance can develop. Throughout this paper we restrict

ourselves to regions of parameter space where qi ≪ 1, such

that nonperturbative preheating processes are negligible.

With Φ0 ≈ 0.6f, we find q0 ¼ 0.09, and so parametric

instability cannot be triggered by this term. Meanwhile,

q3;4 ≪ 1 requires

σ ≪
m2

ϕ

Φ0

; g2 ≪

�

mϕ

Φ0

�

2

; ð56Þ

or, in terms of the original parameters of the potential (22)

c3 ≪ m2
η=f; m2

h=f
2 þ c4 ≪ 10m2

η=f
2: ð57Þ

This relation for the smallness of the CP breaking term c3
in terms of the inflaton mass is consistent with the similar

relation for cη found in the previous section. Likewise, the

constraint on c4 is consistent with our expectations from

the computation of the potential, as can be verified with

the appendix. We always ensure that the above bounds are

respected, and do not consider parametric resonance in

this paper.

If we regard the inflaton condensate ϕ to be a collection

of zero-momentum inflaton “particles,” then the effective

mass M2

effðtÞ has a physical interpretation in terms of

Feynan diagrams:

These diagrams describe the three-leg, − 1

2
σϕχ2, and

four-leg, − 1

2
g2ϕ2χ2, interaction terms which reside in the

canonically normalized Lagrangian—Eq. (43). Since we

have not quantized the inflaton, there are no ϕ propagators,

which allows for tree-level diagrams only. These diagrams

describe the perturbative decay of a single inflaton particle

with mass mϕ into two Higgs particles of comoving

momentum k ∼ amϕ=2, and the annihilation of a pair of

ϕ particles into a pair of χ particles with comoving

momentum k ∼ amϕ respectively. We use the term inflaton

particle rather loosely here, since what we are really

describing is creation of Higgs particles from a classical
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inflaton condensate. This diagrammatic representation does

however offer intuition for the physical processes at work.

B. Bogoliubov calculation

We wish to solve Eq. (51) with frequency (52). Our

calculation closely follows that of Ref. [20]. First, we

notice that since the inflaton condensate behaves like a

collection of nonrelativistic particles with zero pressure,

Pϕ ≈ 0, and so we have a00=a ≈ 2a2H2. Therefore, for the

modes k2 ∼ a2m2

ϕ which we expect to be produced, we can

safely neglect a00=a, given that H ≪ mϕ during reheating.

In the adiabatic representation, the solution to the mode

equation Eq. (51) may be written in the WKB form

(see e.g. [18,20]):

μkðτÞ ¼
αkðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p e−iΨkðτÞ þ βkðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p eþiΨkðτÞ; ð58Þ

where the accumulated phase is given by

Ψkðτ0Þ≡
Z

τ0

τ0

dτ00ωkðτ00Þ: ð59Þ

Equation (58) is a solution of Eq. (51) provided that the

Bogoliubov coefficients satisfy the following coupled

equations:

αk
0ðτÞ¼ βkðτÞ

w0
kðτÞ

2wkðτÞ
eþ2iΨkðτÞ;

βk
0ðτÞ¼ αkðτÞ

w0
kðτÞ

2wkðτÞ
e−2iΨkðτÞ; ð60Þ

which also implies that

μ0kðτÞ ¼ −iαkðτÞ
ffiffiffiffiffiffiffiffiffiffiffi

wkðτÞ
2

r

e−iΨkðτÞ þ iβkðτÞ
ffiffiffiffiffiffiffiffiffiffiffi

wkðτÞ
2

r

eþiΨkðτÞ:

ð61Þ

The Wronskian condition, W½μkðtÞ; μ�kðtÞ� ¼ i, demands

that the Bogoliubov coefficients are normalized as

jαkðtÞj2 − jβkðtÞj2 ¼ 1. In this basis, the Hamiltonian of

the χ field is instantaneously diagonalized. The single

particle mode occupation number nk is defined as the

energy of the mode, 1

2
jμ0kj2 þ 1

2
ω2

kjμkj2, divided by the

frequency of the mode:

nkðτÞ ¼
jμ0kðτÞj2 þ ω2

kðτÞjμkðτÞj2
2ωkðτÞ

−
1

2
¼ jβkðτÞj2: ð62Þ

The −1=2 corresponds to subtraction of the zero-point

energy, and the last equality is obtained via substitution of

the WKB solution (58). In terms of the classical mode

functions, creation of Higgs particles occurs due to depar-

ture from the initial positive-frequency solution: the initial

conditions therefore at τ ¼ τ0 (the start of reheating) are

then αk ¼ 1, βk ¼ 0, and so nkðτ0Þ ¼ 0. Since we work in

the perturbative regime specified by Eq. (56) the mode

occupation numbers remain small, jβkðτÞj2 ≪ 1, and so we

can iterate Eq. (60) to obtain

βkðτÞ ≈
Z

τ

τ0

dτ0
ω0
kðτ0Þ

2ωkðτ0Þ
e−2iΨkðτ0Þ: ð63Þ

In the perturbative regime we can approximate

Ψkðτ0Þ ≈ k

Z

τ0

τ0

dτ00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

aðτ00Þmχ

k

�

2

s

; ð64Þ

while for the frequency we have

ω0
k

2ωk

≈
a3=2ðτ0ÞΦ0mϕ

4k2

×

�

σþ2Φ0ðg2−m2

ϕ=f
2Þa−3=2ðτ0Þsinðmϕtðτ0ÞþϑÞ

1þa2ðτ0Þm2
χ=k

2

�

×cosðmϕtðτ0ÞþϑÞ; ð65Þ

where we have neglected terms containing derivatives of

the scale factor. Inserting these results into Eq. (63) gives

βkðτÞ ¼
σΦ0mϕ

8k2

Z

τ

τ0

dτ0a3=2ðτ0Þ
1þ a2ðτ0Þm2

χ=k
2
½eþiψ−

3;k
ðτ0Þ þ e−iψ

þ
3;k
ðτ0Þ�

þ
ðg2 −m2

ϕ=f
2ÞΦ2

0
mϕ

8ik2

×

Z

τ

τ0

dτ0

1þ a2ðτ0Þm2
χ=k

2
½eþiψ−

4;k
ðτ0Þ

− e−iψ
þ
4;k
ðτ0Þ�;

ð66Þ

where we have defined the phases

ψ�
3;kðτÞ≡�2ΨkðτÞ þmϕtðτÞ þ ϑ;

ψ�
4;kðτÞ≡�2ΨkðτÞ þ 2ðmϕtðτÞ þ ϑÞ: ð67Þ

As discussed in Ref. [20] (see also [18]), the integrals in

Eq. (66) can be evaluated using the method of stationary

phase: they are dominated near the instants τ3;k and τ4;k
where

d

dτ
ψ−
3;kðτÞ

�

�

�

�

τ3;k

¼ 0;⇒ k ¼ 1

2
mϕaðτ3;kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4δ2M

q

;

d

dτ
ψ−
4;kðτÞ

�

�

�

�

τ4;k

¼ 0;⇒ k ¼ mϕaðτ4;kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2M

q

; ð68Þ

where we have defined δM ≡mχ=mϕ. For the 3-leg

interaction, the above result corresponds to the creation

of a pair of Higgs particles with momentum k ∼ amϕ=2
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from an inflaton with massmϕ at the instant τ3;k of the resonance between the mode k and the inflaton condensate. A similar

interpretation may be given for the 4-leg interaction. Upon performing the integrals, we find

nkðτÞ ¼
πσ2Φ2

0
mϕ

32k4
ð1 − 4δ2MÞ

a3ðτ3;kÞ
a0ðτ3;kÞ

þ
πðg2 −m2

ϕ=f
2Þ4Φ2

0
mϕ

64k4
ð1 − δ2MÞ
a0ðτ4;kÞ

þ
πσðg2 −m2

ϕ=f
2ÞΦ3

0
mϕ

32k4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − 4δ2MÞð1 − δ2MÞ
q

Iðτ3;kτ4;kÞ; ð69Þ

where we have defined

Iðτ3;kτ4;kÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3ðτ3;kÞ
a0ðτ3;kÞa0ðτ4;kÞ

s

sin ½ψ−
4;kðτ4;kÞ − ψ−

3;kðτ3;kÞ�: ð70Þ

As discussed in [20], the oscillatory term Iðτ3;kτ4;kÞ represents the interference between the two decay channels (ϕ → χχ

and ϕϕ → χχ) of the inflaton. It is present because we have treated the inflaton as a classical oscillating source, and not an

honest collection of particles.

C. Boltzmann equations

Since mϕ ≫ mχ the Higgs particles are relativistic when produced. This means we can effectively treat them as a bath of

radiation with g� number of degrees of freedom. We define the comoving energy density in the Higgs field as

a4ρχ ≡

Z

∞

0

d3k

ð2πÞ3 ωknk

¼ σ2Φ2
0
mϕ

64π
ð1 − 4δ2MÞ

Z

∞

0

dk

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ a2ðτÞm2
χ

q

a3ðτ3;kÞ
a0ðτ3;kÞ

þ
ðg2 −m2

ϕ=f
2Þ2Φ4

0
mϕ

128π
ð1 − δ2MÞ

Z

∞

0

dk

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ a2ðτÞm2
χ

q

1

a0ðτ4;kÞ

þ
σðg2 −m2

ϕ=f
2ÞΦ3

0
mϕ

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 − 4δ2MÞð1 − δ2MÞ
q

Z

∞

0

dk

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ a2ðτÞm2
χ

q

Iðτ3;kτ4;kÞ: ð71Þ

At first glance these integrals appear divergent. This

however is not the case, as can be seen from the require-

ment that the Higgs particles be produced perturbatively.

Equation (68) enforces

1

2
mϕa0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 4δ2M

q

< k <
1

2
mϕaðτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 4δ2M

q

; for ϕ→ χχ;

ð72Þ

mϕa0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2M

q

< k < mϕaðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2M

q

; for ϕϕ → χχ:

ð73Þ
Hence, the limits of the first and the third integrals on the

right-hand side of Eq. (71) should be replaced by the limits

of Eq. (72), while those of the second integral should be

replaced by Eq. (73). Once again neglecting derivatives of

a, we obtain

d

dτ
ða4ρχÞ ≈ a2

σ2Φ2
0
mϕ

64π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4δ2M

q

þ a−1
ðg2 −m2

ϕ=f
2Þ2Φ4

0
mϕ

128π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δ2M

q

; ð74Þ

where we have discarded the interference term since it

vanishes when averaged over time. Replacing factors of a

using ρϕ ≈m2

ϕΦ
2
0
=ð2a3Þ, we are left with the familiar

Boltzmann equation:

a−4
d

dt
ða4ρχÞ ≈ Γϕ→χχρϕ þ 2

½σϕϕ→χχv�v¼0

mϕ

ρ2ϕ; ð75Þ

where

Γϕ→χχ ¼
σ2

32πmϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4
m2

χ

m2

ϕ

s

;

½σϕϕ→χχv�v¼0 ¼
ðg2 −m2

ϕ=f
2Þ2

64πm2

ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
m2

χ

m2

ϕ

s

: ð76Þ

The decay rate Γϕ→χχ agrees with the tree-level result

obtained from Quantum Field Theory (QFT). The cross

section σϕϕ→χχ also agrees with QFT so long as the

Feynman amplitude is evaluated at zero relative veloc-

ity, v ¼ 0.
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Note that ϕ, as a CP odd particle, could have couplings

to vector bosons as an axion. For example, it could have

couplings to gluons and photons as

LCP ¼ cγα

f
ϕFμν

~Fμν þ cγαs

f
ϕTrGμν

~Gμν ð77Þ

as well as to W and Z bosons. These couplings could be

generated by triangle diagrams involving fermionic degrees

of freedom coupled to SM gauge interactions. Whether

these are present or not is a highly model dependent

question, whereas we have focused in this paper on

interactions between the Goldstone bosons (the Higgs

and the inflaton). We refer the reader to Refs. [28,29]

for a thorough analysis of preheating due to nonzero

couplings to gauge bosons.

Conservation of energy demands a−3 d
dt
ða3ρϕÞ ¼

−a−4 d
dt
ða4ρχÞ, which gives

d

dt
ða3ρϕÞ ¼ −Γϕ→χχða3ρϕÞ − 2

½σϕϕ→χχv�v¼0

mϕa
3

ða3ρϕÞ2:

ð78Þ
If the trilinear interaction is absent (σ ¼ 0) we can integrate

Eq. (78) to show that a3ρϕ → const as t → ∞. This means

that the inflaton does not completely decay: volume

dilution due to the Hubble expansion takes place faster

than the annihilation process ϕϕ → χχ can drain energy

from the inflaton condensate. In order to successfully reheat

the Universe, the trilinear coupling must be present. Indeed,

in the absence of ϕϕ → χχ annihilations (if g2 ¼ m2

ϕ=f
2),

we can integrate Eq. (78) to show that a3ρϕ ∼ e−Γt: in a

time of order Γ−1
ϕ→χχ the inflaton has decayed completely.

For the remainder of this section we set g2 ¼ m2

ϕ=f
2 in

order to place order-of-magnitude bounds on the model

parameters.

Up to this point we have neglected the decay of the Higgs

to the SM. The dominant channel is χ → bb̄, with width

Γχ→bb̄ ¼
3mχ

8π

�

mb

vχ

�

2
�

1 −
4m2

b

m2
χ

�

3=2

∼ 5 MeV: ð79Þ

Since mχ ≫ mb, the bb̄ decay products are produced

relativistically:

a−4
d

dt
ða4ρbÞ ¼ Γχ→bb̄ρb: ð80Þ

With ϕϕ → χχ processes absent, energy conservation

demands

a−4
d

dt
ða4ρχÞ ≈ Γϕ→χχρϕ − Γχ→bb̄ρb;

a−3
d

dt
ða3ρϕÞ ¼ −Γϕ→χχρϕ: ð81Þ

Equations (80) and (81) are the final Boltzmann equa-

tions describing perturbative reheating in the composite

Higgs model. The approximations involved in their deri-

vation will begin to break down when the energy density of

the decay products becomes comparable to the energy

density of the inflaton condensate. Furthermore, as pointed

out in [30], and discussed in detail in [31,32], Γϕ→χχ

develops a temperature dependence due to interactions

(which we have not accounted for) between the decay

products and the condensate. Indeed, as the decay products

thermalize via scatterings and further decays, they acquire a

temperature dependent “plasma” mass mpðTÞ of the order
∼λT2, where λ is a typical coupling constant for a particle in

the plasma. The presence of these “thermal”masses prevent

decay of the condensate if m2

ϕ ≈ λT2: the decay process

becomes kinematically forbidden. An important conse-

quence of these finite temperature corrections is that the

reheating temperature, TR (the temperature at the onset of

the radiation dominated phase) is generally higher com-

pared to the naive estimate obtained via setting Γ ¼ H (see

the following section).

In addition to the effect of thermal masses, the produced

χ particles can “rescatter” off the oscillating condensate hϕi
to excite δϕ particles. This opens another possible channel

for decay of the condensate. We illustrate this schematically

in Fig. 6 for the case of the 4-leg interaction. In the

language of our Bogoliubov calculation, this process

corresponds to the term χ2ϕδϕ which results from expand-

ing ϕ about the mean field: ϕðxÞ ¼ ϕðtÞ þ δϕðxÞ. There is
also a subdominant process of the type χχ → δϕδϕ, which

is phase space suppressed. Such processes, which we have

neglected in this work, will promote the decay rate Γϕ→χχ

from a constant to a function of time and temperature.

To include these processes would require recourse to

nonequilibrium thermal field theory, which is beyond the

scope of this paper. Having acknowledged these caveats,

FIG. 6. Schematic illustration of possible inflaton-Higgs inter-

actions. The vacuum energy of the inflaton field exists as spatially

coherent oscillations, which can be interpreted as a condensate of

nonrelativistic zero-momentum ϕ particles. The condensate

decays via three-leg, − 1

2
σϕχ2, and four-leg, − 1

2
g2ϕ2χ2, inter-

actions. The Bogoliubov calculation presented in Sec. IV B treats

the condensate as a classical source, and so rescattering processes

between the produced Higgs particles and the condensate which

excite δϕ particles are ignored.
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we use the Boltzmann equations (80) and (81) to place

rough bounds on our model parameters only.

D. Parameter constraints from reheating

Combining the Planck constraint on the inflaton mass,

Eq. (37), with the bound (56), we find that for reheating to

proceed perturbatively,

�

σ

Mp

�

2

≪ 10−27

�

f

Mp

�

2

; ð82Þ

where we have used Φ0 ∼ 0.6f. This provides an upper

bound on the trilinear coupling σ in terms of the scale f. A
lower bound on σ can be obtained from the condition that

the Universe be totally radiation dominated before the Big

Bang Nucleosynthesis (BBN) epoch. This requires knowl-

edge of the reheating temperature TR, which may be

estimated as follows: Reheating completes at time tc, when

the Hubble rate H2 ¼ ρ=3M2
p ∼ t−2c drops below the decay

rate Γϕ→χχ . The density of the Universe at this moment is

then

ρðtcÞ≃ 3M2
pH

2ðtcÞ ¼ 3M2
pΓ

2

ϕ→χχ : ð83Þ

Provided that the Higgs particles are produced in thermal

and chemical equilibrium, the temperature of the Higgs

plasma is TR. Treating this ultrarelativistic gas of particles

with Bose-Einstein statistics, the energy density of the

Universe in thermal equilibrium is then

ρðTRÞ≃
�

π2

30

�

g�T
4
R; ð84Þ

where the factor g�ðTRÞ ∼ 102–103 depends on the number

of ultrarelativistic degrees of freedom. Comparing Eqs. (83)

and (84) we arrive at

TR ≈ 0.1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γϕ→χχMp

p

: ð85Þ

In order not to spoil the success of BBN, the Universe must

be completely dominated by relativistic particles before the

BBN epoch. This constrains the reheating temperature to be

TR ≳ 5 MeV [33,34], which in turn implies
7

Γϕ→χχ ≳ 10−40Mp: ð86Þ

Combining Eqs. (37), (76), (86) we find

�

σ

Mp

�

2

≳ 10−45

�

f

Mp

�

: ð87Þ

Finally, combining this temperature bound with the bound

for perturbative reheating Eq. (82), we find

f ≫ 10−18Mp: ð88Þ

V. TEV INFLATON AND ITS CONSEQUENCES

With the inflaton and Higgs doublet originated by the

breaking of the same global symmetry, the Coleman-

Weinberg contributions to their potential are naturally of

the same order. Therefore, we would expect the mass of

both particles to be not far from each other, mη ∼mh, as

well as similar size couplings. From perturbative reheating

we require mη > 2mh as well as a condition on the cubic

coupling Eq. (57), namely

c3

f
≪

�

mη

f

�

2

; ð89Þ

which is technically natural as the parameter c3 breaks the
symmetry η → −η.

Inflation would also impose a bound on the mass of the

inflaton with respect to the scale of breaking, see Eqs. (34)

and (26), mη=f ≃ 10−6, a hierarchy which is again tech-

nically natural. On the other hand, in our inflationary

potential we could have added a constant term, a phenom-

enological cosmological constant which could change this

condition and allow closer values of f and mη.

One should also keep in mind that inflation cannot last to

reach energies around the MeV when the very predictive

theory of big-bang nucleosynthesis takes on [36]. Another

constraint to keep in mind is the generation of baryon

asymmetry in the Universe, which in the context of

electroweak baryogenesis (see Ref. [37] and references

therein) would require inflation to end some time before the

electroweak scale. One additional attractive feature of this

model is that the conditions for reheating, which in turn

require CP violation, could be helpful for baryogenesis,

e.g. see Ref. [38] for a study of electroweak baryogenesis in

a similar model.

If the inflaton is heavier than the Higgs doublet, one can

integrate it out leading to an effective field theory (EFT). In

Ref. [39] one can find a more general discussion on the EFT

due the presence of a singlet like η, and its phenomenology.

Interestingly, the cubic term c3 is the main player in the

reheating discussion as well as the collider phenomenology.

The cubic term, when the Higgs acquires a vacuum

expectation value v, would lead to a mixing of the singlet

with the Higgs, resulting in two mass eigenstates with an

admixture of η and h. The mixing angle is given by

sθ ≃
c3v

m2
η

: ð90Þ

The mixing, then, changes the way the physical SM-like

Higgs behaves, as well as induces new couplings of the

heavy η-like state to vector bosons and fermions. Detailed

studies from electroweak precision tests (EWPT) at LEP, as

well as current constraints from the measurement of the

7
We note that since TR also enters expressions for the

primordial observables, the lower bound on Γϕ→χχ given by

Eq. (86) may be tightened if our model were to be confronted
with CMB data—see for example Ref. [35].
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Higgs properties imposes strong bounds on this mixing.

Moreover, the heavier state can be searched for directly and

the reach for these searches is related to the amount of

mixing.

In Fig. 7, we show current and future constraints on

these parameters. They include (1) a χ2 fit to Higgs

coupling measurements [40–49], (2) the 95% C.L. exclu-

sion prospects for LHC at 14 TeV with L ¼ 300 fb−1 and

L ¼ 3000 fb−1, by assuming that future measurements of

Higgs signal strengths will be centered at the SM value, and

use the projected CMS sensitivities, (3) a fit to the oblique

parameters S, T, U using the best-fit values and standard

deviations from the global analysis of the GFitter Group

[50], and finally (4) future limits on EW precision observ-

ables from eþe− colliders (see e.g. [51]), ILC and FCC-ee.

The corrections to S and T from the inflaton-Higgs mixing

given by

ΔS ¼ 1

π
s2θ

�

−HS

�

m2

h

m2
Z

�

þHS

�

m2
η

m2
Z

��

;

ΔT ¼ g2

16π2c2WαEM
s2θ

�

−HT

�

m2

h

m2
Z

�

þHT

�

m2
η

m2
Z

��

ð91Þ

with the functionsHSðxÞ andHTðxÞ defined in Appendix C
of [52].

Regarding future colliders, we assumed a SM best-fit

value, and interpreted the ILC GigaZ program’s expected

precision is σS ¼ 0.017 and σT ¼ 0.022 [50,53] and the

FCC-ee prospects of σS ¼ 0.007 and σT ¼ 0.004 [54]. As

one can see, colliders are sensitive to relatively large values

of the triple coupling, whereas perturbative reheating is

sensitive to lower values of the coupling.

Finally, note that in the explicit CP breaking scenario,

there would be direct couplings of the inflaton to SM

fermions (ϵf) and these would be proportional to c3;

see Eq. (17b).

VI. CONCLUSIONS

We have presented a single model that can realize

inflation, perturbative reheating, and electroweak sym-

metry breaking in a natural way. In the minimal model

the five Goldstone bosons from the global symmetry

breaking SOð6Þ ∼ SUð4Þ → SOð5Þ ∼ Spð4Þ play the role

of a Higgs doublet and an inflaton singlet. We have argued

that a trilinear coupling between the latter (η) and two

Higgs bosons (h) is necessary for successful reheating, and
shown under which condition this term can be present. In

particular, the model needs to have broken CP, which can

be realized spontaneously or explicitly. A detailed deriva-

tion of the scalar potential for h and η arising from loops of

SUð2Þ gauge bosons and fermions in the 6 of SUð4Þ was
given in the first section.

The CMB results [14] allow us to relate the parameters in

our model, and explain mass hierarchies. A range of energy

scales for inflation, or equivalently for the mass of the

inflaton, was presented in the second section. To the merit

of the model, none of the relevant scales are expected to be

affected by quantum gravity.

The motive of perturbative reheating further fixes the

parameters in the potential. For a particular range of

parameter space [given by Eq. (57)] parametric instability

is not triggered and nonperturbative effects are subdomi-

nant. With a Bogoliubov calculation [20] we find the single

particle occupation numbers, and as usual the evolution of

the fields is established using Boltzmann equations. We

finished this section by an exposition of the numerical

constraints on the reheating temperature and the model

parameters from perturbativity (86)–(88).

We have also explored the possibility of TeV values of

the inflaton mass and coupling to the Higgs. As an effective

theory, the inflaton’s effect at low energies is inducing a

mixing effect in the Higgs particle properties, an effect

which is constrained by precise electroweak data as well as

the LHC. We discussed the future reach for colliders on the

inflaton-Higgs parameter space, finding that while pertur-

bative reheating explores a region of small mixing, col-

liders are most sensitive to large values of this parameter.

The model building presented in this paper hints at

interesting opportunities for further studies. The fact that

the model is able to address and connect normally unrelated

FIG. 7. Present and future 95% C.L. exclusion limits in the

ðmη; c3Þ plane from ATLAS and CMS measurements of Higgs

signal strengths (denoted by Run1 indirect) and from EWPT

(denoted by LEP). Values above the red-dashed line are excluded

at 95% C.L. by the combination (EWPT and Higgs signal

strength). Above the green line may also be excluded by

constraints from heavy scalar searches at LHC, although these

limits could be evaded in the presence of new decay modes for η.

Also shown is the projected exclusion reach from Higgs signal

strengths at the 14 TeV run of LHC with L ¼ 300 fb−1 and at

HL-LHC with L ¼ 3000 fb−1 in blue, as well as projections from

measurements of the S and T oblique parameters with ILC-

GigaZ and FCC-ee in dashed-blue.
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cosmological events in a natural way shows that the

considerations here may indeed tempt the reader to further

inquiry, in the light of recent developments. As mentioned

in the Introduction, the discussion of cosmological relax-

ation by an interplay between the Higgs and a pGB [15]

offers an attractive example. Other directions include an

investigation of the changed evolution of the Higgs

dynamics and its implications on electroweak stability

[17], possible UV completions for which the present theory

is a boundary condition at low energy (on which we

commented in [13]), as well as the implications of CP
violation and the inflaton degree of freedom for electro-

weak baryogenesis.
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APPENDIX: COMPUTATION OF THE SCALAR

POTENTIAL

1. Composite Higgs vacuum

At one loop, the Coleman-Weinberg potential due to up-

type quarks coupling to Σ as in (11) is given by
8

Vðh; ηÞ ¼ −2Nc

Z

d4p

ð2πÞ4 log ðp
2
ΠuL

ΠuR
− jΠuLuR

j2Þ

ðA1Þ

where we have used new form factors for simplicity, which

are just rotations of the original parameters in the

Lagrangian (11):

ΠuL
¼ Π

q
0
þ Π

q0

0

2
− Π

q
1

Tr½Ψ̄qΣ�pTr½ΨqΣ
†�

ūLpuL
; ðA2aÞ

ΠuR
¼ Π

u
0
− Π

u
1

Tr½Ψ̄uΣ�pTr½ΨuΣ
†�

ūRpuR
; ðA2bÞ

ΠuLuR
¼ Mu

1

Tr½Ψ̄qΣ�Tr½ΨuΣ
†�

ūLuR
: ðA2cÞ

As explained in the main text, we refer to Ψ as the fermion

multiplets in the 6 of SU(4).

If we assume the ratios form factors fall off rapidly

enough with momentum to make the integrals converge, we

may expand the logarithms to find the following

Lagrangian to fourth order in the fields
9
:

Vðϕ; hÞ ¼ a1h
2 þ λh4 þ jκj2ða2 þ a3h

2 þ a4jκj2Þ ðA3Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − h2 − η2
p

þ iϵtη. The coefficients are

given by integrals over the form factors of the fields

contributing to the Coleman-Weinberg potential: the gauge

bosons, and the up-type and down-type fermions. If we

assume the contributions are dominated by the heaviest up-

type quark, which we will call the top as in the Standard

Model (while this quark is not necessarily identified with

the Standard Model top), the coefficients are given by

a1 ¼ −2f2Nc

Z

d4p

ð2πÞ4
1

Π0

ð−4Πq
1
Π

t
0
Þ; ðA4aÞ

a2 ¼ −2f2Nc

Z

d4p

ð2πÞ4
1

Π0

ð−2Πq
0
Π

t
1
− 2Π

q0

1
Π

t
1
Þ; ðA4bÞ

a3 ¼ −2Nc

Z

d4p

ð2πÞ4
1

Π0

�

−
4jM1

t j2
p2

þ 8Π
q
0
Π

q
1
Π

t
0
Π

t
1

Π0

þ 8Π
q
1
Π

q0

1
Π

t
0
Π

t
1

Π0

þ 16Π
q
1
Π

t
1

�

; ðA4cÞ

a4 ¼ −2Nc

Z

d4p

ð2πÞ4
1

Π0

�

2ðΠq
0
Þ2ðΠt

1
Þ2

Π0

þ 4Π
q
0
Π

q0

1
ðΠt

1
Þ2

Π0

þ 2ðΠq0

1
Þ2ðΠt

1
Þ2

Π0

�

; ðA4dÞ

λ ¼ −2Nc

Z

d4p

ð2πÞ4
1

Π0

�

8ðΠq
1
Þ2ðΠt

0
Þ2

Π0

�

; ðA4eÞ

where Π0 is the relevant field independent factor:

Π0 ¼
1

2
Π

t
0
ðΠq

0
þ Π

q0

0
Þ ðA5Þ

i.e., a function of the different propagation terms for the

fermions, the first terms in the fermion Lagrangian (11).

Also, note we have defined

p → p=f ðA6Þ

for simplicity.
8
In general there will be contributions from down type quarks

and gauge bosons as well. In fact, it should be noted that at least
one other fermion generation is needed to make the CP assign-
ment physical [55]. However, these will not lead to different
couplings in the scalar potential, and here we take them to be
subleading corrections to the coefficients.

9
This is a common assumption, motivated by the fact that

higher order terms are expected to be suppressed by squares of
ratios of form factors. In other words, this falls under the same
assumption as the convergence of the integrals.
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2. CP breaking vacuum

Here we repeat the exercise in the previous section to compute the coefficients of the CP breaking vacuum potential,

Vðη; hÞ ¼ ctadηþm2
ηη

2 þ ~cηη
3 þ ληη

4 þm2

hh
2 þ λhh

4 þ c3ηh
2 þ c4η

2h2: ðA7Þ

The coefficients ci are in general nonzero, except for at α ¼ 1=4π. Below we compute the parameters in an example with

α ¼ 1=3π case. As argued in the main text, the α ¼ 2=3π case can be obtained from this by making the substitution η → −η

in the potential
10
:

ctad ¼ −2Ncf
3

Z

d4p

ð2πÞ4
1

2Π0

ffiffiffi

3
p

ηΠt
1
ððϵu − 4Þϵu − 1ÞðΠq

0
þ Π

q0

0
Þ; ðA8aÞ

m2
η ¼ −2Ncf

2

Z

d4p

ð2πÞ4
1

Π0

�

3Πt
1
ððϵu − 4Þϵu − 1Þ2ðΠq

0
þ Π

q0

0
Þ2

8Π0

− Π
t
1
ðϵ2u − 1ÞðΠq

0
þ Π

q0

0
ÞÞ
�

; ðA8bÞ

~cη ¼ −2Ncf

Z

d4p

ð2πÞ4
�

−

ffiffiffi

3
p

η3ðΠt
1
Þ2ðϵ2u − 1Þððϵu − 4Þϵu − 1ÞðΠq

0
þ Π

q0

0
ÞðΠq

0
þ Π

q0

0
Þ

2Π2
0

�

; ðA8cÞ

λη ¼ −2Nc

Z

d4p

ð2πÞ4
ðΠt

1
Þ2ðϵ2u − 1Þ2ðΠq

0
þ Π

q0

0
Þ2

2Π2
0

; ðA8dÞ

m2

h ¼ −2Nc

Z

d4p

ð2πÞ4
ðp2ðΠt

1
ðϵ2u þ 3ÞðΠq

0
þ 2Π

q
1
þ Π

q0

0
Þ − 2Π

q
1
Π

t
0
Þ − 2M2

t ðϵ2u þ 3ÞÞ
2p2

Π0

; ðA8eÞ

λh ¼ −2Ncf
2

Z

d4p

ð2πÞ4
ðϵ2u þ 3ÞðM2

q − p2
Π

q
1
Π

t
1
Þ

p2
Π0

þ ðΠt
1
ðϵ2u þ 3ÞðΠq

0
þ 2Π

q
1
þ Π

q0

0
Þ − 2Π

q
1
Π

t
0
Þ2

8Π2
0

; ðA8fÞ

c3 ¼ −2Ncf

Z

d4p

ð2πÞ4
�

ffiffiffi

3
p

ððϵu − 4Þϵu − 1ÞðM2
t − p2

Π
q
1
Π

t
1
Þ

p2
Π0

ðA8gÞ

þ
ffiffiffi

3
p

Π
t
1
ððϵu − 4Þϵu − 1ÞðΠq

0
þ Π

q0

0
ÞðΠt

1
ðϵ2u þ 3ÞðΠq

0
þ 2Π

q
1
þ Π

q0

0
Þ − 2Π

q
1
Π

t
0
Þ

4Π2
0

�

ðA8hÞ

c4 ¼ −2Nc

Z

d4p

ð2πÞ4
�

2ðϵ2u − 1Þðp2
Π

q
1
Π

t
1
−M2

t Þ
p2

Π0

ðA8iÞ

−
η2h2Πt

1
ðϵ2u − 1ÞðΠq

0
þ Π

q0

0
ÞðΠt

1
ðϵ2u þ 3ÞðΠq

0
þ 2Π

q
1
þ Π

q0

0
Þ − 2Π

q
1
Π

t
0
Þ

2Π2
0

�

ðA8jÞ

where again Π0 is the relevant field independent factor, here given by

Π0 ¼
1

2
ðΠq

0
þ Π

q0

0
ÞðΠt

0
− 2Πt

1
ðϵ2u þ 1ÞÞ: ðA9Þ

As explained in the main text, the tadpole term can be shifted away by an appropriate shift in the other parameters,

corresponding to a vev for η:

ctad þ 2m2
ηvη þ 3~cηv

2
η þ 4ληv

3
η ¼ 0:

10
These are again the parameters before shifting away the tadpole term, in exactly the same way as above.
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The new parameters will then be given in terms of the quoted parameters as

m2
η → m2

η þ 3~cηvη þ 6ληv
2
η; ðA10aÞ

~cη → ~cη þ 4vηλη; ðA10bÞ

m2

h → c3vη þ c4v
2
η; ðA10cÞ

c3 → c3 þ 2c4vη: ðA10dÞ
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