Energy rebound as a potential threat to a low-carbon future: findings from a new exergy-based national-level rebound approach

Brockway, Paul E, Saunders, Harry, Heun, Matthew, Foxon, Timothy, Steinberger, Julia, Barrett, John and Sorrell, Steve (2017) Energy rebound as a potential threat to a low-carbon future: findings from a new exergy-based national-level rebound approach. Energies, 10 (1). p. 51. ISSN 1996-1073

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB)


150 years ago, Stanley Jevons introduced the concept of energy rebound: that anticipated energy efficiency savings may be “taken back” by behavioural responses. This is an important issue today because, if energy rebound is significant, this would hamper the effectiveness of energy efficiency policies aimed at reducing energy use and associated carbon emissions. However, empirical studies which estimate national energy rebound are rare and, perhaps as a result, rebound is largely ignored in energy-economy models and associated policy. A significant difficulty lies in the components of energy rebound assessed in empirical studies: most examine direct and indirect rebound in the static economy, excluding potentially significant rebound of the longer term structural response of the national economy. In response, we develop a novel exergy-based approach to estimate national energy rebound for the UK and US (1980–2010) and China (1981–2010). Exergy—as “available energy”—allows a consistent, thermodynamic-based metric for national-level energy efficiency. We find large energy rebound in China, suggesting that improvements in China’s energy efficiency may be associated with increased energy consumption (“backfire”). Conversely, we find much lower (partial) energy rebound for the case of the UK and US. These findings support the hypothesis that producer-sided economies (such as China) may exhibit large energy rebound, reducing the effectiveness of energy efficiency, unless other policy measures (e.g., carbon taxes) are implemented. It also raises the prospect we need to deploy renewable energy sources faster than currently planned, if (due to rebound) energy efficiency policies cannot deliver the scale of energy reduction envisaged to meet climate targets.

Item Type: Article
Keywords: constant elasticity of substitution (CES) function; aggregate production function (APF); energy efficiency; energy rebound; exergy efficiency; exergy; macroeconomic rebound; energy policy
Schools and Departments: School of Business, Management and Economics > SPRU - Science Policy Research Unit
Subjects: H Social Sciences > HC Economic history and conditions > HC0079 Special topics, A-Z > HC0079.E5 Environmental policy and economic development. Sustainable development Including environmental economics
Depositing User: Timothy Foxon
Date Deposited: 21 Aug 2017 09:24
Last Modified: 21 Aug 2017 10:12

View download statistics for this item

📧 Request an update