University of Sussex
Browse

File(s) under permanent embargo

Are badgers ‘Under The Weather’? Direct and indirect impacts of climate variation on European badger (Meles meles) population dynamics

journal contribution
posted on 2023-06-09, 14:38 authored by David W Macdonald, Christopher Newman, Christina D Buesching, Pierre NouvelletPierre Nouvellet
Weather conditions, and how they in turn define and characterize regional climatic conditions, are a primary limit on global species diversity and distribution, and increasing variability in global and regional climates have significant implications for species and habitat conservation. A Capture-Mark-Recapture study revealed that badger (Meles meles) life history parameters interact in complicated ways with annual variability in the seasonality of temperature and rainfall, both in absolute and in phenological terms. A strong predictive relationship was observed between survival and both temperature and late-summer rainfall. This link at the population dynamics level was related to individual body-weight increases observed between summer and autumn. In addition, fecundity was correlated with spring rainfall and temperature. We investigated and confirmed that relationships were consistent with observed variation in the intensity of a parasitic infection. Finally, fecundity during any given year correlated with conditions in the preceding autumn. Badger survival also correlated with late winter weather conditions. This period is critical for badgers insofar as it coincides with their peak involvement in road traffic accidents (RTAs). RTA rate during this period was linked strongly to temperature, underlining the intricate ways in which a changing climate might interact with anthropogenic agents to influence species' population processes. Equinoctial conditions produced significant population driver effects. That is, while summers will always be relatively warm compared with winters, spring and autumn weather can be more variable and functionally delimit the 'productive' vs. nonproductive period of the year in terms of badger behavioural and physiological cycles. This study highlights how appropriately informed conservation strategies, mindful of trends in climatic conditions, will become ever-more essential to ensure the survival of many species globally.

History

Publication status

  • Published

File Version

  • Published version

Journal

Global Change Biology

ISSN

13541013

Publisher

Wiley

Volume

16

Page range

2913-2922

Department affiliated with

  • Evolution, Behaviour and Environment Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2018-08-21

First Compliant Deposit (FCD) Date

2018-08-21

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC