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Activity in perceptual classification networks as
a basis for human subjective time perception
Warrick Roseboom 1,2, Zafeirios Fountas 3, Kyriacos Nikiforou 3, David Bhowmik3, Murray Shanahan3,4 &

Anil K. Seth 1,2,5

Despite being a fundamental dimension of experience, how the human brain generates the

perception of time remains unknown. Here, we provide a novel explanation for how human

time perception might be accomplished, based on non-temporal perceptual classification

processes. To demonstrate this proposal, we build an artificial neural system centred on a

feed-forward image classification network, functionally similar to human visual processing. In

this system, input videos of natural scenes drive changes in network activation, and accu-

mulation of salient changes in activation are used to estimate duration. Estimates produced

by this system match human reports made about the same videos, replicating key qualitative

biases, including differentiating between scenes of walking around a busy city or sitting in a

cafe or office. Our approach provides a working model of duration perception from stimulus

to estimation and presents a new direction for examining the foundations of this central

aspect of human experience.
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In recent decades, predominant models of human time per-
ception have been based on the presumed existence of neural
processes that continually track physical time—so-called

pacemakers—similar to the system clock of a computer1–3. Clear
neural evidence for pacemakers at psychologically relevant
timescales has not been forthcoming and so alternative approa-
ches have been suggested (see refs. 4–8). The leading alternative
proposal is the network-state-dependent model of time percep-
tion, which proposes that time is tracked by the natural temporal
dynamics of neural processing within any given network9–11.
While recent work suggests that network-state-dependent models
may be suitable for describing temporal processing on short time
scales11–13, such as may be applicable in motor systems10,13–15, it
remains unclear how this approach might accommodate longer
intervals (greater than a few seconds) associated with subjective
duration estimation.

In proposing neural processes that attempt to track physical
time as the basis of human subjective time perception, both the
pacemaker and state-dependent network approaches stand in
contrast with the classical view in both philosophical16 and
behavioural work17–19 on time perception that emphasises the
key role of perceptual content, and most importantly changes in
perceptual content, in subjective time. It has often been noted that
human time perception is characterised by its many deviations
from veridical perception20–23. These observations pose sub-
stantial challenges for models of subjective time perception that
assume subjective time attempts to track physical time precisely.
One of the main causes of deviation from veridicality lies in basic
stimulus properties. Many studies have demonstrated the influ-
ence of stimulus characteristics such as complexity17,24 and rate
of change25–27 on subjective time perception, and early models in
cognitive psychology emphasised these features17,28–30. Subjective
duration is also known to be modulated by attentional allocation
to tracking time (e.g. prospective versus retrospective time jud-
gements31–35 and the influence of cognitive load33,34,36).

Attempts to integrate a content-based influence on time per-
ception with pacemaker accounts have hypothesised spontaneous
changes in clock rate (e.g. ref. 37), or attention-based modulation
of the efficacy of pacemakers31,38. No explicit efforts have been
made to demonstrate the efficacy of state-dependent network
models in dealing with these issues. Focusing on pacemaker-
based accounts, assuming that content-based differences in sub-
jective time are produced by attention-related changes in pace-
maker rate or efficacy implies a specific sequence of processes and
effects. First, it is necessary to assume that content alters how
time is tracked, and that these changes cause pacemaker/accu-
mulation to deviate from veridical operation. Changed pacemaker
operation then leads to altered reports of time specific to
that content. In contrast to this approach, we propose that the
intermediate step of a modulated pacemaker, and the pacemaker
in general, be abandoned altogether. Instead, we propose
that changes in perceptual content can be tracked directly in
order to determine subjective time. A challenge for this proposal
is that it is not immediately clear how to quantify perceptual
change in the context of natural ongoing perception. However,
recent progress in machine learning provides a solution to this
problem.

Accumulating evidence supports both the functional and
architectural similarities of deep convolutional image classifica-
tion networks (e.g. ref. 39) to the human visual processing hier-
archy40–42. Changes in perceptual content in these networks can
be quantified as the collective difference in activation of neurons
in the network to successive inputs, such as consecutive frames of
a video. We propose that this simple metric provides a sufficient
basis for subjective time estimation. Further, because this metric
is based on perceptual classification processes, we hypothesise

that the produced duration estimates will exhibit the same
content-related biases as characterise human time perception. To
test our proposal, we implemented a model of time perception
using an image classification network39 as its core and compared
its performance to that of human participants in estimating time
for the same natural video stimuli.

Our results show that model estimates closely match human
estimates, including overestimation of shorter and under-
estimation of longer durations. The match between human- and
model-produced estimates improves when the model input is
constrained to approximate human visual-spatial attention (based
on human gaze data). Finally, model-produced duration estimates
replicate the same pattern of biases by video scene type (city,
country, office/cafe) as human duration estimates for these same
scenes. Overall, these results support our proposal that human-
like time estimation can be generated based on tracking changes
in perceptual content, as measured in the dynamics of perceptual
classification networks, providing a new approach to understand
this fundamental aspect of human experience.

Results
Human-like time estimation based on perceptual classification.
The stimuli for human and model experiments were videos of
natural scenes, such as walking through a city or the countryside,
or sitting in an office or cafe (see Supplementary Movie 1;
Fig. 1c). These videos were split into durations between 1 and 64 s
and used as the input from which our model would produce
estimates of duration (see Methods for more details). To validate
the performance of our model, we had human participants watch
these same videos and make estimates of duration using a visual
analogue scale (Fig. 1). Participants’ gaze position was also
recorded using eye tracking while they viewed the videos.

The videos were input to a pre-trained feed-forward image
classification network39. To estimate time, the model measured
whether the Euclidean distance between successive activation
patterns within a given layer, driven by the video input, exceeded
a dynamic threshold (Fig. 2). The dynamic threshold was
implemented for each layer, following a decaying exponential
corrupted by Gaussian noise and resetting whenever the
measured Euclidean distance exceeded it. For a given layer, when
the activation difference exceeded the threshold, a salient
perceptual change was determined to have occurred, and a unit
of subjective time was accumulated (see Supplementary Fig. 4 and
Supplementary Discussion for model performance under a static
threshold). To transform the accumulated, abstract temporal
units extracted by the model into a measure of time in standard
units (seconds) for comparison with human reports, we trained
support vector regression to estimate the duration of the videos
based on the accumulated salient changes across network layers.
Importantly, the regression was trained on the physical durations
of the videos, not the human-provided estimates. Therefore, an
observed correspondence between model- and human-produced
estimates would demonstrate the ability of the underlying
perceptual change detection and accumulation method to
model human duration perception, rather than the more
trivial task of mapping human reports to specific videos/durations
(see Methods for full details of system design and training).

We initially had the model produce estimates under two input
scenarios. In one scenario, the entire video frame was used as
input to the network. In the other, input was spatially constrained
by biologically relevant filtering—the approximation of human
visual-spatial attention by a “spotlight” centred on real human
gaze fixation. The extent of this spotlight approximated an area
equivalent to human parafoveal vision and was centred on the
participants’ fixation measured for each time-point in the video.
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Only the pixels of the video inside this spotlight were used as
input to the model (see Supplementary Movie 2).

As time estimates generated by the model were made on the
same videos as the reports made by humans, human and model
estimates could be compared directly. Figure 3a shows duration
estimates produced by human participants and the model under
the different input scenarios. Participants’ reports demonstrated
qualities typically found for human estimates of time: over-
estimation of short durations and underestimation of long
durations (regression of responses to the mean/Vierordt’s law),
and variance of reports proportional to the reported duration
(scalar variability/Weber’s law). Model estimates produced when

the full video frame was input (Fig. 3b; Full-frame model)
revealed qualitative properties similar to human reports—though
the degree of over- and underestimation was exaggerated, the
variance of estimates were generally proportional to the estimated
duration (see Supplementary Figs. 8 and 9 and Supplementary
Discussion: Estimate variance by duration, for detailed explora-
tion of human and model estimate variance). These results
demonstrate that the basic method of our model—accumulation
of salient changes in activation of a perceptual classification
network—can produce meaningful estimates of time. Specifically,
the slope of estimation is non-zero with short durations
discriminated from long, and the estimates replicate some of
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Fig. 2 Simplified depiction of the time estimation model. Salient changes in network activation driven by video input are accumulated and transformed into
standard units for comparison with human reports. The bottom left shows two consecutive frames of video input. The connected coloured nodes depict
network structure and activation patterns in each layer in the classification network for the inputs. L2 gives the Euclidean distance between network
activations to successive inputs for a given network layer (layers conv2, pool5, fc7, output). Neurons across the hierarchical layers of the classification
network are differentially responsive to feature complexity in images, with higher layers more responsive to object-like archetypes and lower layers to
primitive features like edges or contours (e.g. see Fig. 4 in ref. 41). In the Change Detection stage, the value of L2 for a given network layer is compared to a
dynamic threshold (red line). When L2 exceeds the threshold level, a salient perceptual change is determined to have occurred, a unit of subjective time is
determined to have passed and is accumulated to form the base estimate of time. Support vector regression is applied to convert this abstract time
estimate into standard units (in s) for comparison with human reports
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Fig. 1 Experimental apparatus and procedure. a Human participants observed videos of natural scenes and reported the apparent duration while we tracked
their gaze direction. b Depiction of the high-level architecture of the model used for simulations (see also Fig. 2 below). c Frames from a video used as a
stimulus for human participants and input for simulated experiments. Human participants provided reports of the duration of a video in seconds using a
visual analogue scale. d Videos used as stimuli for the human experiment and input for the model experiments included scenes recorded walking around a
city (top left), in an office (top right), in a cafe (bottom left), walking in the countryside (bottom right) and walking around a leafy campus (centre)
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the qualitative aspects of human reports often associated with
time perception. However, the overall performance of the system
under these conditions still departed from that of human
participants (Fig. 3e, f) (see Supplementary Figs. 6 and 7 and
Supplementary Discussion: Changes in classification network
activation, not just stimulation, are critical to human-like time
estimation, for results of experiments conducted on pixel-wise
differences in the raw video alone. These data show that tracking
changes in classification network activation allows human-like
time estimation, while estimation based on tracking changes in
the stimulus properties alone does not).

Human-like gaze improves model performance. When the
video input to the system was constrained to approximate human
visual-spatial attention by taking into account gaze position
(“Gaze” model; Fig. 3c), model-produced estimates more closely
approximated reports made by human participants (Fig. 3c, e, f),
with substantially improved estimation as compared to estimates

based on the full frame input. This result was not simply due to
the spatial reduction of input caused by the gaze-contingent
spatial filtering, nor the movement of the input frame itself, as
when the gaze-contingent filtering was applied to videos other
than the one from which gaze was recorded (i.e. gaze recorded
while viewing one video then applied to a different video;
“Shuffled” model), model estimates were poorer (Fig. 3d). These
results indicate that the contents of where humans look in a scene
play a key role in time perception and indicate that our approach
is capturing key features of human time perception, as model
performance is improved when input is constrained to be more
human-like.

Model and human time estimation vary by content. As
described in the introduction, human estimates of duration are
known to vary by content (e.g. refs. 17,24–27). In our test videos,
three different types of scenes could be broadly identified: scenes
filmed moving around a city, moving around a leafy university
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campus and surrounding countryside, or from relatively sta-
tionary viewpoints inside a cafe or office (Fig. 1d). We reasoned
that busy scenes, such as moving around a city, would generally
provide more varied perceptual content, with content also being
more complex and changing at a faster rate during video pre-
sentation. This should mean that city scenes would be judged as
longer relative to country/outside and office or cafe scenes. As
shown in (Fig. 3g), the pattern of biases in human reports is
consistent with this hypothesis. Compared to the global mean
estimates (Fig. 3a), reports made about city scenes were judged to
be ~6% longer than the mean, while more stationary scenes,
such as in a cafe or office, were judged to be ~4% shorter than
the overall mean estimation (see Supplementary Fig. 1 for full
human and model produced estimates for each tested duration
and scene).

To test whether the model-produced estimates exhibited the
same content-based biases seen in human duration reports, we
examined how model estimates differed by scene type. Following
the same reasoning as for the human data, busy city scenes should
provide a more varied input, which should lead to more varied
activation within the network layers, and therefore greater
accumulation of salient changes and a corresponding bias towards
overestimation of duration. As shown in Fig. 3h, when the model
was shown city scenes, estimates were biased to be longer (~24%)
than the overall mean estimation, while estimates for country/
outside (~4%) or office/cafe (~7%) scenes were shorter than
average. The level of overestimation for city scenes was
substantially larger than that found for human reports, but the
overall pattern of biases was the same: city > campus/outside > cafe/
office. Relative over- and underestimation will partly depend on the
content of the training set. In the described experiments, the ratio
of scenes containing relatively more changes, such as city and
campus or outside scenes was balanced with scenes containing
less change, such as office and cafe. Different ratios of training
scenes would change the precise over/underestimation, though this
is similarly true of human estimation, as the content of previous
experience alters subsequent judgements in a number of cases, for
example refs. 37,43,44. See Methods for more details of training and
trial composition, and see also Discussion for discussion of
system redundancy and its impact on overestimation).

It is important to note again here that the model estimation
was not produced based on human estimation data. The support
vector regression method mapped accumulated perceptual
changes across network layers to the physical durations of the
videos, not participant reports. This regression mapping was
trained on all video types together, not specifically conducted for
each video type separately, meaning that the differences in
estimation by scene presented in Fig. 3h reflect the relative
differences in the presence of salient perceptual changes in the
different scenes (as indicated in Fig. 3i). That the same pattern of
biases in estimation is found without explicitly fitting the model
to human data indicates the power of the underlying method of
accumulating salient changes in perceptual content to produce
human-like time perception (see Supplementary Fig. 10 and
Supplementary Discussion: Effects of regression on different
duration ranges, for results when the regression training is limited
to a specific subset of durations, mimicking the block-wise range
regression effects often seen in human reports, e.g. refs. 43,44;
Supplementary Fig. 5 and Supplementary Discussion: Model
performance is not due to regression overfitting, for evidence
against regression overfitting).

Looking into the system performance more deeply, it can be
seen that the qualitative matches between human reports and
model estimation do not simply arise in the final step of the
architecture, wherein the state of the accumulators at each
network layer is regressed against physical duration using a

support vector regression scheme. Even in the absence of this
final step, which transforms accumulated salient changes into
standard units of physical time (in s), the system showed the same
pattern of biases in accumulation for most durations, at most of
the examined network layers. More perceptual changes were
accumulated for city scenes than for either of the other scene
types, particularly in the lower network layers (conv2 and pool5).
Therefore, the regression technique used to transform the
tracking of salient perceptual changes is not critical to reproduce
these scene-wise biases in duration estimation, and is needed only
to compare system performance with human estimation in
commensurate units. Indeed humans do not experience time only
in seconds; it has been shown that even when they cannot provide
a label in seconds, such as in early development, humans can still
report about time45,46. Learning the mapping between a sensation
of time and the associated label in standard units can be
considered as a regression problem that needs to be solved during
development45,47. While regression of accumulated network
activation differences into standard units is not critical to
reproducing human-like biases in duration perception, basing
duration estimation in network activation is key to model
performance. When estimates are instead derived directly from
differences between successive frames (on a pixel-wise basis) of
the video stimuli, bypassing the classification network entirely,
generated estimates are substantially worse, and most impor-
tantly, do not closely follow human biases by content in
estimation. See Supplementary Discussion: Changes in classifica-
tion network activation, not just stimulation, are critical to
human-like time estimation, for more details.

Accounting for the role of attention in time perception. The
role of attention in human time perception has been extensively
studied (see ref. 33 for review). One key finding is that when
attention is not specifically directed to tracking time (retro-
spective time judgements), or actively constrained by other task
demands (e.g. high cognitive load), duration estimates differ from
when attention is, or can be, freely directed towards time32–34,36.
Our model is based on detection of salient changes in neural
activation underlying perceptual classification. To determine
whether a given change is salient, the difference between previous
and current network activation is compared to a running
threshold, the level of which can be considered to be attention to
changes in perceptual classification—effectively attention to time
in our conception.

Regarding the influence of the threshold on duration estima-
tion, in our proposal the role of attention to time is intuitive:
when the threshold value is high (the red line in Change
Detection in Fig. 2 is at a higher level in each layer of the
network), a larger difference between successive activations is
required in order for a given change to be deemed salient
(intuitively, when you are not paying attention to something, you
are less likely to notice it changing, but large changes will still be
noticed). Consequently, fewer changes in perceptual content are
registered within a given epoch and, therefore, duration estimates
are shorter. By contrast, when the threshold value is low, smaller
differences are deemed salient and more changes are registered,
producing generally longer duration estimates. Within our model,
it is possible to modulate the level of attention to perceptual
change using a single scaling factor referred to as Attention
Modulation (see description of Eq. (1)). Changing this scaling
factor alters the threshold level, which, following the above
description, modulates attention to change in perceptual
classification. Shown in Fig. 4 are duration estimates for the
“Gaze” model presented in Fig. 3c under different attentional
modulation. Lower than normal attention leads to general
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underestimation of duration (lighter lines), while higher attention
leads to increasing overestimation (darker lines; see Supplemen-
tary Fig. 3 for results modulating attention in the other models).
Taking duration estimates produced under lower attention and
comparing with those produced under higher attention can
produce the same pattern of differences in estimation often
associated attending (high attention to time; prospective/low
cognitive load) or not attending (low attention to time;
prospective/high cognitive load) reported in the literature (e.g.
see refs. 32–34). These results demonstrate the flexibility of our
model to deal with different demands posed from both “bottom-
up” basic stimulus properties as well as “top-down” demands of
allocating attention to time.

Discussion
This study tested the proposal that accumulating salient changes
in perceptual content, indicated by differences in successive
activations of a perceptual classification network, would be suf-
ficient to produce human-like estimates of duration. Results
showed that model-produced estimates could differentiate short
from long durations, supporting basic duration estimation.
Moreover, when input to the model was constrained to follow
human gaze, model estimation improved and became more like
human reports. Model estimates were also found to vary by the
kind of scene presented, producing the same pattern of biases in
estimation seen in human reports for the same videos, with evi-
dence for this bias present even within the accumulation process
itself. Finally, we showed that modulating the level of attention to
perceptual changes within the proposed model produced sys-
tematic under- and overestimation of durations, consistent with
previous findings that demonstrate an influence of attention to
time on duration estimation. Overall, these results provide
compelling support for the hypothesis that human subjective time
estimation can be achieved by tracking non-temporal perceptual
classification processes, in the absence of any regular pacemaker-
like processes.

One might worry that the reliance of our model on a visual
classification network is a flaw; after all, it is clear that human
time perception depends on more than vision alone, not least
because blind people still perceive time. However, the proposal is
for a simple conceptual and mechanistic basis to accomplish time

perception under naturalistic conditions using complex stimuli.
The model’s performance demonstrates the feasibility of this
approach when benchmarked against human performance,
revealing similar performance under similar constraints. It should
be noted that the described human data was obtained with par-
ticipants seated in a quiet room, and with no auditory track to the
video. This created an environment in which the most salient
changes during a trial were within the video presentation.
Certainly, in an experiment containing audio, audition would
contribute to reported duration—and in some cases move human
performance away from that of our vision-only model. Similarly,
if participants sat in a quiet room with no external stimulation
presented, temporal estimations would likely be biased by chan-
ges in the internal bodily states of the observer. Indeed, the insula
cortex has been suggested to track and accumulate changes in
bodily states that contribute to subjective time perception48,49.

Although the basis of our model is fundamentally visual—an
image classification network—similar classification network
models exist for audition (e.g. refs. 50,51), suggesting the possi-
bility to implement the same mechanism in models for auditory
classification. This additional level of redundancy in estimation
would likely improve performance for scenarios that include
both visual and auditory information, as has been shown in
other cases where redundant cues from different modalities are
combined23,52–54. Additional redundancy in estimation would
also likely reduce the propensity for the model to overestimate in
scenarios that contain many times more perceptual changes than
expected (such as indicated by the difference between human and
model scene-wise biases Fig. 3h, g). Inclusion of further modules
such as memory for previous duration estimations is also likely to
improve system estimation as it is now well established that
human estimation of duration depends not only on the current
experience of a duration, but also past reports of duration43,44

(see also below discussion of predictive coding). While future
extensions of our model could incorporate modules dedicated to
auditory, interoceptive, memory and other processes, these pos-
sibilities do not detract from the fact that the current imple-
mentation provides a simple mechanism that can be applied to
these many scenarios, and that when human reports are limited
in a similar way to the model, human and model performance are
strikingly similar.

The core conception of our proposal shares some similarities
with the previously discussed state-dependent network models of
time9,10. As in our model, the state-dependent network approach
suggests that changes in activation patterns within neural net-
works (network states) over time can be used to estimate time.
However, rather than simply saying that any dynamic network
has the capacity to represent time by virtue of its changing state,
our proposal goes further to say that changes in perceptual
classification networks are the basis of content-driven time per-
ception. This position explicitly links time perception and con-
tent, and moves away from models of subjective time perception
that attempt to track physical time, a notion that has long been
identified as conceptually problematic20. A primary feature of
state-dependent network models is their natural opposition to the
classic depiction of time perception as a centralised and unitary
process12,55,56, as suggested in typical pacemaker-based
accounts1–3. Our suggestion shares this notion of distributed
processing, as the information regarding salient changes in per-
ceptual content within a specific modality (vision in this study) is
present locally to that modality.

Finally, the described model used Euclidean distance in net-
work activation as the metric of difference between successive
inputs—our proxy for perceptual change. While this simple
metric was sufficient to deliver a close match between model and
human performance, future extensions may consider alternative
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Changing attention affects duration estimates, biasing estimation across a
broad range of durations. The model still generally differentiates longer
from shorter durations, as indicated by the positive slopes with increasing
real duration, but also exhibits biases consistent with those known from
behavioural literature associated with attention to time (e.g. refs. 33,34)
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metrics. The increasingly influential predictive coding approach
to perception57–61 suggests one such alternative that may increase
the explanatory power of the model. Predictive coding accounts
are based on the idea that perception is a function of both pre-
diction and current sensory stimulation. Specifically, perceptual
content is understood as the brain’s “best guess” (Bayesian pos-
terior) of the causes of current sensory input, constrained by prior
expectations or predictions. In contrast to bottom-up accounts of
perception, in which perceptual content is determined by the
hierarchical elaboration of afferent sensory signals, strong pre-
dictive coding accounts suggest that bottom-up signals (i.e.
flowing from sensory surfaces inwards) carry only the prediction
errors (the difference, at each layer in a hierarchy, between actual
and predicted signals), with prediction updates passed back down
the hierarchy (top-down signals) to inform future perception. A
role for predictive coding in time perception has been suggested
previously, both in specific6 and general models62, and as a
general principle to explain behavioural findings63–67. Our model
exhibits the basic properties of a minimal predictive coding
approach; the current network activation state is the best guess
(prediction) of the future activation state, and the Euclidean
distance between successive activations is the prediction error.
The good performance and robustness of our model may reflect
this closeness in implementation. While our basic implementa-
tion already accounts for some context-based biases in duration
estimation (e.g. scene-wise bias), future implementations can
include more meaningful “top-down”, memory and context-
driven constraints on the predicted network state (priors) that
will account for a broader range of biases in human estimation.

In summary, subjective time perception is fundamentally
related to changes in perceptual content. Here we show that
a model built upon detecting salient changes in perceptual con-
tent across a hierarchical perceptual classification network can
produce human-like time perception for naturalistic stimuli.
Critically, model-produced time estimates replicated well-known
features of human reports of duration, with estimation differing
based on biologically relevant cues, such as where in a scene
attention is directed, as well as the general content of a scene (e.g.
city or countryside, etc). Moreover, we demonstrated that mod-
ulation of the threshold mechanism used to detect salient changes
in perceptual content provides the capacity to reproduce the
influence of attention to time in duration estimation. That our
system produces human-like time estimates based on only natural
video inputs, without any appeal to a pacemaker or clock-like
mechanism, represents a substantial advance in building artificial
systems with human-like temporal cognition, and presents a fresh
opportunity to understand human perception and experience of
time.

Methods
Participants. Participants were 55 adults (21.2 years, 40 females) recruited from
the University of Sussex, participating for course credit or £5 per hour. Participants
typically completed 80 trials in the 1 h experimental session, though due to time or
other constraints some participants only completed as few as 20 trials (see Data
availability statement below for details of how to obtain the raw data, giving the
specific trial completion details). Participants provided informed, written consent
prior to completing the experiment. This experiment was approved by the Uni-
versity of Sussex ethics committee.

Apparatus. Experiments were programmed using Psychtoolbox 368 in MATLAB
2012b (MathWorks Inc., Natick, MA, USA) and the Eyelink Toolbox69, and dis-
played on a LaCie Electron 22 BLUE II 22” with screen resolution of 1280 × 1024
pixels and refresh rate of 60 Hz. Eye tracking was performed with Eyelink 1000
Plus (SR Research, Mississauga, ON, Canada) at a sampling rate of 1000 Hz, using
a desktop camera mount. Head position was stabilised at 57 cm from the screen
with a chin and forehead rest.

Stimuli. Experimental stimuli were based on videos collected throughout the City
of Brighton in the UK, the University of Sussex campus, and the local surrounding
area. They were recorded using a GoPro Hero 4 at 60 Hz and 1920 × 1080 pixels,
from face height. These videos were processed into candidate stimulus videos
165 min in total duration, at 30 Hz and 1280 × 720 pixels. To create individual trial
videos, a pseudo-random list of 4290 trials was generated—330 repetitions of each
of 13 durations (1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48 and 64 s). The duration of each
trial was pseudo-randomly assigned to the equivalent number of frames in the
165 min of video. There was no attempt to restrict overlap of frames between
different trials. The complete trial list is available in the supplied raw data (see Data
availability below). Only 4251 of the 4290 total trials were used in the main ana-
lyses, as eye-tracking data was missing for technical or other reasons in the
excluded trials. In the absence of the eye-tracking data, there was no way to
precisely compare the “Gaze” and “Shuffled” models with the human and Full-
frame data, so these data were discarded.

For computational experiments when we refer to the “Full Frame” we used the
centre 720 × 720 pixel patch from the video (56% of pixels; approximately equivalent
to 18 degrees of visual angle (dva) for human observers). When computational
experiments used human gaze data, a 400 × 400 pixel patch was centred on the gaze
position measured from human participants on that specific trial (about 17% of the
image; approximately 10 dva for human observers). The human gaze information was
taken from each of the 4290 trials completed by human observers, meaning that the
recording of an individual observer’s gaze was used for each given simulated trial
(rather than an aggregate of many different observers for a single trial).

Procedure. Participants typically completed 80 trials in blocks of 20 trials with short
periods of rest between blocks. Each block took approximately 12min to complete.
During a block of trials, participants pressed the left mouse key to begin presentation
of the video stimulus. Following completion of the video, a visual analogue scale
would appear on screen allowing reports of between 0 and 90 s, linearly spaced along
the scale. Participants reported the apparent duration of the video by moving the
cursor along the visual scale until they were satisfied with their report and confirmed
their report by pressing the left mouse button. Participants were instructed to not
explicitly count during the stimulus presentations. They were told that counting
included physical rhythmic tapping, or the mental equivalent.

Computational model architecture. The computational model is made up of four
parts: (1) an image classification deep neural network, (2) a threshold mechanism,
(3) a set of accumulators and (4) a regression scheme. We used the convolutional
deep neural network AlexNet39 available through the python library caffe70.
AlexNet had been pre-trained to classify high-resolution images in the LSVRC-
2010 ImageNet training set71 into 1000 different classes, with state-of-the-art
performance. It consisted of five convolutional layers, some of which were followed
by normalisation and max-pooling layers, and two fully connected layers before the
final 1000 class probability output. It has been argued that convolutional networks’
connectivity and functionality resemble the connectivity and processing taking
place in human visual processing41 and thus we use this network as the main visual
processing system for our computational model. At each time-step (30 Hz), a video
frame was fed into the input layer of the network and the subsequent higher layers
were activated. For each frame, we extracted the activations of all neurons from
layers conv2, pool5, fc7 and the output probabilities. For each layer, we calculated
the Euclidean distance between successive states. If the activations were similar, the
Euclidean distance would be low, while the distance between neural activations
corresponding to frames that include different objects would be high. Each network
layer had an initial threshold value for the distance in neural space. This threshold
decayed with some stochasticity over time. When the measured Euclidean distance
in a layer exceeded the threshold, the counter in that layer’s accumulator was
incremented by one and the threshold for that layer was reset to its maximum
value. Implementation details for each layer can be found in the table below, and
the threshold was calculated as:

Tk
tþ1 ¼ Tk

t �
Tk
max � Tk

min

τk

� �
e
� D

τk

� �
þN 0;

Tk
max � Tk

min

α

� �
; ð1Þ

where Tk
t is the threshold value of kth layer at timestep t and D indicates the

number of timesteps since the last time the threshold value was reset. Tk
max, T

k
min

Table 1 Threshold mechanism parameters

Parameters for implementing salient event threshold

Layer No. of neurons Tmax Tmin τ α

conv2 290,400 340 100 100 50
pool5 9216 400 100 100 50
fc7 4096 35 5 100 50
output 1000 0.55 0.15 100 50
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and τk are the maximum threshold value, minimum threshold value and decay
timeconstant for kth layer, respectively, values which are provided in Table 1.
Stochastic noise drawn from a Gaussian was added to the threshold and α—a
dividing constant to adjust the variance of the noise. Finally, the level of attention
was modulated by a global scaling factor C > 0 applied to the values of Tk

min  
C � Tk

min and Tk
max  C � Tk

max.
The number of accumulated salient perceptual changes recorded in the

accumulators represent the elapsed duration between two points in time. In order
to convert estimates of subjective time into units of time in seconds, a simple
regression method was used based on epsilon-Support Vector Regression from
scikit-learn Python toolkit72. The kernel used was the radial basis function with a
kernel coefficient of 10−4 and a penalty parameter for the error term of 10−3. We
used 10-fold cross-validation. To produce the presented data, we used nine out of
ten groups for training and one (i.e. 10% of data) for testing. This process was
repeated ten times so that each group was used for validation only once.

Data availability
All data required to reproduce the reported results for both human and model
experiments are available at https://doi.org/10.17605/OSF.IO/7UKHJ. The com-
putational model used in this study is available from the Github repository https://
github.com/timestorm-project/time-without-clocks.
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