University of Sussex
Browse
Bogan et al 2019.pdf (2.06 MB)

Imaging spectrometry-derived estimates of regional ecosystem composition for the Sierra Nevada, California

Download (2.06 MB)
journal contribution
posted on 2023-06-09, 17:22 authored by Stacy A Bogan, Alexander AntonarakisAlexander Antonarakis, Paul R Moorcroft
The composition of the plant canopy is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. Terrestrial ecosystem and biosphere models, which are used to predict how ecosystems are expected to respond to changes in climate, atmospheric CO2, and land-use change, require accurate representations of plant canopy composition at large spatial scales. The ability to accurately specify plant canopy composition is important because it determines the physiological and ecological properties of plants (such as leaf photosynthetic capacity, patterns of plant carbon allocation and tissue turnover, and the resulting dynamics of plant demography) that govern the biophysical and biogeochemical functioning of ecosystems. Traditionally, plant canopy composition has been represented in a coarse-grained manner within terrestrial biosphere models, with ecosystems being comprised of a single plant functional type (PFT). However, models are increasingly seeking to represent fine-scale spatial variation in plant functional diversity. In this study, we show how imaging spectrometry measurements can provide spatially-comprehensive estimates of within-biome heterogeneity in PFT composition across a functionally diverse and topographically heterogeneous ~710 km2 area in the Southern Sierra Mountains of California. AVIRIS (Airborne Visible Infrared Imaging Spectrometer) data at 18 m resolution from the recent HyspIRI Preparatory Mission (Hyperspectral InfraRed Imager) were used to estimate the sub-pixel fractions of seven PFTs represented in the ED2 terrestrial biosphere model: Shrub, Oak, Western Hardwood, Western Pine, Cedar/Fir, and High-elevation Pine, plus a Grass/NPV (Non-Photosynthetic Vegetation) fraction using Multiple Endmember Spectral Mixture Analysis (MESMA). ED2 is an individual-based terrestrial biosphere model capable of representing fine-scale sub-pixel ecosystem heterogeneity. Our results show that this methodology captures important elevation-related shifts in canopy composition that occur within the study area that are not resolved by existing multi-spectral land-cover products. These estimates modestly improved when the putative PFT endmembers considered in the mixture analysis were constrained using available geospatial data about the presence and absence of the PFTs in particular areas: the average RMSEs (root-mean-square errors) with the geospatially-constrained versus conventional method were 11.3% and 11.9% respectively, with larger reductions in the bias (i.e. mean error) in the abundances of Oak, Cedar/Fir, and Western Hardwood PFTs (ranging from 2.0% to 7.8%). At the hectare scale around four flux towers in the Southern Sierra Mountains, the overall composition improved from an RMSE of 18.2% (5.0-24.2% for individual PFTs) to RMSE 9.5% (3.3-13.2% for individual PFTs). Downgrading AVIRIS to 30 m resolution resulted in a reduction in accuracy of the constrained method to an RMSE of 12.7% (0-23.7%) with < 1% change in bias for all tree and shrub PFTs. Our results demonstrate that imaging spectrometry measurements from planned satellite missions such as HyspIRI, EnMAP (Environmental Mapping and Analysis Program), and HISUI (Hyper-spectral Imager SUIte) can provide important and much-needed information about fine-scale heterogeneity in the composition of plant canopies for constraining and improving terrestrial ecosystem and biosphere model simulations of regional- and global-scale vegetation dynamics and function.

Funding

Linking Terrestrial Biosphere Models with Remote Sensing Measurements of Ecosystem Composition, Structure, and Function; NASA; NNH11ZDA001N-HYSPIRI

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Remote Sensing of Environment

ISSN

0034-4257

Publisher

Elsevier

Volume

228

Page range

14-30

Department affiliated with

  • Geography Publications

Research groups affiliated with

  • climate@sussex Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2019-03-26

First Open Access (FOA) Date

2020-04-19

First Compliant Deposit (FCD) Date

2019-03-25

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC